Reference

class pyclesperanto_prototype.AffineTransform3D(transform=None, image=None)

This class is a convenience class to setup affine transform matrices. When initialized, this object corresponds to a null transform. Afterwards, you can append transforms, e.g. by calling transform.translate(10, 20).

The API aims to be compatible to Imglib2 AffineTransform3D.

Inspired by: https://github.com/imglib/imglib2-realtransform/blob/master/src/main/java/net/imglib2/realtransform/AffineTransform3D.java

center(shape, undo: bool = False)

Change the center of the image to the root of the coordinate system

Parameters
  • shape (iterable) – shape of the image which should be centered

  • undo (bool, optional) – if False (default), the image is moved so that the center of the image is in the root of the coordinate system if True, it is translated in the opposite direction

Return type

self

concatenate(transform)

Concatenate an AffineTransform3D with another.

Parameters

transform (AffineTransform3D) –

Return type

self

copy()

Makes a copy of the current transform which can then be manipulated without changing the source.

Return type

copy of the current transform

inverse()

Computes the inverse of the transformation.

This can be useful, e.g. when you want to know the transformation from image B to image A but you only know the transformation from A to B.

Return type

self

rotate(axis: int = 2, angle_in_degrees: float = 0)

Rotation around a given axis (default: z-axis, meaning rotation in x-y-plane)

Parameters
  • axis (int) – axis to rotate around (0=x, 1=y, 2=z)

  • angle_in_degrees (int) – angle in degrees. To convert radians to degrees use this formula: angle_in_deg = angle_in_rad / numpy.pi * 180.0

Return type

self

rotate_around_x_axis(angle_in_degrees: float)

Rotation around the X-axis.

Parameters

angle_in_degrees (int) – angle in degrees. To convert radians to degrees use this formula: angle_in_deg = angle_in_rad / numpy.pi * 180.0

Return type

self

rotate_around_y_axis(angle_in_degrees: float)

Rotation around the Y-axis.

Parameters

angle_in_degrees (int) – angle in degrees. To convert radians to degrees use this formula: angle_in_deg = angle_in_rad / numpy.pi * 180.0

Return type

self

rotate_around_z_axis(angle_in_degrees: float)

Rotation around the Z-axis.

Parameters

angle_in_degrees (int) – angle in degrees. To convert radians to degrees use this formula: angle_in_deg = angle_in_rad / numpy.pi * 180.0

Return type

self

scale(scale_x: Optional[float] = None, scale_y: Optional[float] = None, scale_z: Optional[float] = None)

Scaling the current affine transform matrix.

Parameters
  • scale_x (float) – scaling along x axis

  • scale_y (float) – scaling along y axis

  • scale_z (float) – scaling along z axis

Return type

self

shear_in_x_plane(angle_y_in_degrees: float = 0, angle_z_in_degrees: float = 0)

Shear image in X-plane (a.k.a. YZ-plane) along Y and/or Z direction.

Tip: This can be used for single objective lightsheet image reconstruction / deskewing. For Janelia lattice, use angle_x_in_degrees and for Zeiss lattice, use angle_y_in_degrees.

Angles need to be specified in degrees. To convert radians to degrees use this formula:

angle_in_deg = angle_in_rad / numpy.pi * 180.0

Parameters
  • (float (angle_z_in_degrees) – shear angle along Y-axis in degrees. Defaults to 0.

  • optional) – shear angle along Y-axis in degrees. Defaults to 0.

  • (float – shear angle along Z-axis in degrees. Defaults to 0.

  • optional) – shear angle along Z-axis in degrees. Defaults to 0.

Return type

self

shear_in_y_plane(angle_x_in_degrees: float = 0, angle_z_in_degrees: float = 0)

Shear image in Y-plane (a.k.a. XZ-plane) along X and/or Z direction.

Angles need to be specified in degrees. To convert radians to degrees use this formula:

angle_in_deg = angle_in_rad / numpy.pi * 180.0

Parameters
  • (float (angle_z_in_degrees) – shear angle along Y-axis in degrees. Defaults to 0.

  • optional) – shear angle along Y-axis in degrees. Defaults to 0.

  • (float – shear angle along Z-axis in degrees. Defaults to 0.

  • optional) – shear angle along Z-axis in degrees. Defaults to 0.

Return type

self

shear_in_z_plane(angle_x_in_degrees: float = 0, angle_y_in_degrees: float = 0)

Shear image in Z-plane (a.k.a. XY-plane) along X and/or Y direction.

Angles need to be specified in degrees. To convert radians to degrees use this formula:

angle_in_deg = angle_in_rad / numpy.pi * 180.0

Parameters
  • (float (angle_y_in_degrees) – shear angle along X-axis in degrees. Defaults to 0.

  • optional) – shear angle along X-axis in degrees. Defaults to 0.

  • (float – shear angle along Y-axis in degrees. Defaults to 0.

  • optional) – shear angle along Y-axis in degrees. Defaults to 0.

Return type

self

translate(translate_x: float = 0, translate_y: float = 0, translate_z: float = 0)

Translation along axes.

Parameters
  • translate_x (float) – translation along x-axis

  • translate_y (float) – translation along y-axis

  • translate_z (float) – translation along z-axis

Return type

self

class pyclesperanto_prototype.STATISTICS_ENTRY(value)

This enum allows to access a specific column in a measurement table corresponding to a specific measurement. It is the python counter part for the Java version in CLIJ2: https://github.com/clij/clij2/blob/master/src/main/java/net/haesleinhuepf/clij2/plugins/StatisticsOfLabelledPixels.java#L30

pyclesperanto_prototype.absolute(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the absolute value of every individual pixel x in a given image.

<pre>f(x) = |x| </pre>

Parameters
  • source (Image) – The input image to be processed.

  • destination (Image, optional) – The output image where results are written into.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.absolute(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_absolute

pyclesperanto_prototype.absolute_difference(source1: Union[ndarray, OCLArray, Image, _OCLImage], source2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines the absolute difference pixel by pixel between two images.

<pre>f(x, y) = |x - y| </pre>

Parameters
  • source1 (Image) – The input image to be subtracted from.

  • source2 (Image) – The input image which is subtracted.

  • destination (Image, optional) – The output image where results are written into.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.absolute_difference(source1, source2, destination)

References

1

https://clij.github.io/clij2-docs/reference_absoluteDifference

pyclesperanto_prototype.add_image_and_scalar(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, scalar: float = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Adds a scalar value s to all pixels x of a given image X.

<pre>f(x, s) = x + s</pre>

Parameters
  • source (Image) – The input image where scalare should be added.

  • destination (Image, optional) – The output image where results are written into.

  • scalar (float, optional) – The constant number which will be added to all pixels.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.add_image_and_scalar(source, destination, scalar)

References

1

https://clij.github.io/clij2-docs/reference_addImageAndScalar

pyclesperanto_prototype.add_images(summand1: Union[ndarray, OCLArray, Image, _OCLImage], summand2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Calculates the sum of pairs of pixels x and y of two images X and Y.

<pre>f(x, y) = x + y</pre>

Parameters
  • summand1 (Image) – The first input image to added.

  • summand2 (Image) – The second image to be added.

  • destination (Image, optional) – The output image where results are written into.

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_addImages

pyclesperanto_prototype.add_images_weighted(summand1: Union[ndarray, OCLArray, Image, _OCLImage], summand2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, factor1: float = 1, factor2: float = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Calculates the sum of pairs of pixels x and y from images X and Y weighted with factors a and b.

<pre>f(x, y, a, b) = x * a + y * b</pre>

Parameters
  • summand1 (Image) – The first input image to added.

  • summand2 (Image) – The second image to be added.

  • destination (Image, optional) – The output image where results are written into.

  • factor1 (float, optional) – The constant number which will be multiplied with each pixel of summand1 before adding it.

  • factor2 (float, optional) – The constant number which will be multiplied with each pixel of summand2 before adding it.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.add_images_weighted(summand1, summand2, destination, factor1, factor2)

References

1

https://clij.github.io/clij2-docs/reference_addImagesWeighted

pyclesperanto_prototype.affine_transform(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, transform: Union[ndarray, AffineTransform3D, AffineTransform] = None, linear_interpolation: bool = False, auto_size: bool = False) Union[ndarray, OCLArray, Image, _OCLImage]

Applies an affine transform to an image.

Parameters
  • source (Image) – image to be transformed

  • destination (Image, optional) – image where the transformed image should be written to

  • transform (4x4 numpy array or AffineTransform3D object or skimage.transform.AffineTransform object or str, optional) – transform matrix or object or string describing the transformation

  • linear_interpolation (bool, optional) – If true, bi-/tri-linear interplation will be applied; if hardware supports it. If false, nearest-neighbor interpolation wille be applied.

  • auto_size (bool, optional) – If true, modifies the transform and the destination image size will be determined automatically, depending on the provided transform. the transform might be modified so that all voxels of the result image have positions x>=0, y>=0, z>=0 and sit tight to the coordinate origin. No voxels will cropped, the result image will fit in the returned destination. Hence, the applied transform may have an additional translation vector that was not explicitly provided. This also means that any given translation vector will be neglected. If false, the destination image will have the same size as the input image. Note: The value of auto-size is ignored if: destination is not None or transform is not an instance of AffineTransform3D.

Return type

destination

pyclesperanto_prototype.apply_vector_field(source: Union[ndarray, OCLArray, Image, _OCLImage], vector_x: Union[ndarray, OCLArray, Image, _OCLImage], vector_y: Union[ndarray, OCLArray, Image, _OCLImage], vector_z: Union[ndarray, OCLArray, Image, _OCLImage] = None, destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, linear_interpolation: bool = False) Union[ndarray, OCLArray, Image, _OCLImage]

Deforms an image stack according to distances provided in the given vector image stacks.

Parameters
  • source (Image) – The input image to be processed.

  • vector_x (Image) – Pixels in this image describe the distance in X direction pixels should be shifted during warping.

  • vector_y (Image) – Pixels in this image describe the distance in Y direction pixels should be shifted during warping.

  • vector_z (Image, optional) – Pixels in this image describe the distance in Z direction pixels should be shifted during warping.

  • destination (Image, optional) – The output image where results are written into.

  • linear_interpolation (bool, optional) –

Return type

destination

pyclesperanto_prototype.arg_maximum_z_projection(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines a Z-position of the maximum intensity along Z and writes it into the resulting image.

If there are multiple z-slices with the same value, the smallest Z will be chosen.

Parameters
  • source (Image) – Input image stack

  • destination (Image, optional) – altitude map

Return type

destination

See also

pyclesperanto_prototype.arg_minimum_z_projection(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines a Z-position of the minimum intensity along Z and writes it into the resulting image.

If there are multiple z-slices with the same value, the smallest Z will be chosen.

Parameters
  • source (Image) – Input image stack

  • destination (Image, optional) – altitude map

Return type

destination

See also

pyclesperanto_prototype.array_equal(source1: Union[ndarray, OCLArray, Image, _OCLImage], source2: Union[ndarray, OCLArray, Image, _OCLImage]) bool

Compares if all pixels of two images are identical. If shape of the images or any pixel are different, returns False. True otherwise

This function is supposed to work similarly like its counterpart in numpy [1].

Parameters
  • source1 (Image) –

  • source2 (Image) –

Return type

bool

References

..[1] https://numpy.org/doc/stable/reference/generated/numpy.array_equal.html

pyclesperanto_prototype.array_equiv(source1: Union[ndarray, OCLArray, Image, _OCLImage], source2: Union[ndarray, OCLArray, Image, _OCLImage]) bool

Compares if all pixels of two images are identical. If shape of the images or any pixel are different, returns False. True otherwise

This function is supposed to work similarly like its counterpart in numpy [1].

Parameters
  • source1 (Image) –

  • source2 (Image) –

Return type

bool

References

..[1] https://numpy.org/doc/stable/reference/generated/numpy.array_equal.html

pyclesperanto_prototype.artificial_objects_2d() Union[ndarray, OCLArray, Image, _OCLImage]

Creates an image showing artificial objects such as lines, blobs, membranes and nuclei.

For practical application, it is recommended to blur this image, and up/downscale it.

Returns

image

Return type

Image

pyclesperanto_prototype.artificial_tissue_2d(width: int = 256, height: int = 256, delta_x=24, delta_y=16, random_sigma_x=3, random_sigma_y=3) Union[ndarray, OCLArray, Image, _OCLImage]
Parameters
  • width

  • height

  • delta_x

  • delta_y

  • random_sigma_x

  • random_sigma_y

pyclesperanto_prototype.asarray(any_array)

Copies an image to GPU memory and returns its handle

Deprecated since version 0.6.0: push behaviour will be changed pyclesperanto_prototype 0.7.0 to do the same as push_zyx because it’s faster and having both doing different things is confusing.

Parameters

image (numpy array) –

Return type

object of type backend.array_type()

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.push(image)

References

1

https://clij.github.io/clij2-docs/reference_push

pyclesperanto_prototype.available_device_names(dev_type: Optional[str] = None, score_key=None) List[str]

Retrieve a list of names of available OpenCL-devices

Parameters
  • dev_type (str) – ‘cpu’, ‘gpu’, or None; None means any type of device

  • score_key (callable) – scoring function, accepts device and returns int, defaults to None

Return type

list of OpenCL-device names

See also

filter_devices

Returns list of devices instead of device names

Examples

>>> import pyclesperanto_prototype as cle
>>> gpu_devices = cle.available_device_names(dev_type="gpu")
>>> print("Available GPU OpenCL devices:" + str(gpu_devices))
>>>
>>> cpu_devices = cle.available_device_names(dev_type="cpu")
>>> print("Available CPU OpenCL devices:" + str(cpu_devices))
pyclesperanto_prototype.average_distance_of_n_closest_neighbors_map(labels: Union[ndarray, OCLArray, Image, _OCLImage], distance_map: Union[ndarray, OCLArray, Image, _OCLImage] = None, n: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label map, determines distances between all centroids and replaces every label with the average distance to the n closest neighboring labels.

Parameters
  • labels (Image) –

  • distance_map (Image, optional) –

  • n (Number, optional) –

Return type

distance_map

References

1

https://clij.github.io/clij2-docs/reference_averageDistanceOfNClosestNeighborsMap

pyclesperanto_prototype.average_distance_of_n_closest_points(distance_matrix: Union[ndarray, OCLArray, Image, _OCLImage], distance_vector_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, n: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Determines the n shortest distances for each column in a distance matrix and puts the average of these in a vector.

Note: This function takes the distance to the identical label NOT into account.

Parameters
  • distance_matrix (Image) –

  • distance_vector_destination (Image, optional) –

  • n (int) –

Return type

distance_vector_destination

pyclesperanto_prototype.average_distance_of_n_far_off_distances(distance_matrix: Union[ndarray, OCLArray, Image, _OCLImage], distance_vector_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, n: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Determines the n highest distances for each column in a distance matrix and puts the average of these in a vector.

Parameters
  • distance_matrix (Image) –

  • distance_vector_destination (Image, optional) –

  • n (int) –

Return type

distance_vector_destination

pyclesperanto_prototype.average_distance_of_n_far_off_points(distance_matrix: Union[ndarray, OCLArray, Image, _OCLImage], distance_vector_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, n: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Determines the n highest distances for each column in a distance matrix and puts the average of these in a vector.

Parameters
  • distance_matrix (Image) –

  • distance_vector_destination (Image, optional) –

  • n (int) –

Return type

distance_vector_destination

pyclesperanto_prototype.average_distance_of_n_nearest_distances(distance_matrix: Union[ndarray, OCLArray, Image, _OCLImage], distance_vector_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, n: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Determines the n shortest distances for each column in a distance matrix and puts the average of these in a vector.

Note: This function takes the distance to the identical label into account.

Parameters
  • distance_matrix (Image) –

  • distance_vector_destination (Image, optional) –

  • n (int) –

Return type

distance_vector_destination

pyclesperanto_prototype.average_distance_of_n_nearest_neighbors_map(labels: Union[ndarray, OCLArray, Image, _OCLImage], distance_map: Union[ndarray, OCLArray, Image, _OCLImage] = None, n: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label map, determines distances between all centroids and replaces every label with the average distance to the n closest neighboring labels.

Parameters
  • labels (Image) –

  • distance_map (Image, optional) –

  • n (Number, optional) –

Return type

distance_map

References

1

https://clij.github.io/clij2-docs/reference_averageDistanceOfNClosestNeighborsMap

pyclesperanto_prototype.average_distance_of_n_shortest_distances(distance_matrix: Union[ndarray, OCLArray, Image, _OCLImage], distance_vector_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, n: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Determines the n shortest distances for each column in a distance matrix and puts the average of these in a vector.

Note: This function takes the distance to the identical label NOT into account.

Parameters
  • distance_matrix (Image) –

  • distance_vector_destination (Image, optional) –

  • n (int) –

Return type

distance_vector_destination

pyclesperanto_prototype.average_distance_of_touching_neighbors(distance_matrix: Union[ndarray, OCLArray, Image, _OCLImage], touch_matrix: Union[ndarray, OCLArray, Image, _OCLImage], average_distancelist_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a touch matrix and a distance matrix to determine the average distance of touching neighbors

for every object.

Parameters
  • distance_matrix (Image) –

  • touch_matrix (Image) –

  • average_distancelist_destination (Image, optional) –

Return type

average_distancelist_destination

References

1

https://clij.github.io/clij2-docs/reference_averageDistanceOfTouchingNeighbors

pyclesperanto_prototype.average_distance_to_n_nearest_other_labels_map(labels: Union[ndarray, OCLArray, Image, _OCLImage], other_labels: Union[ndarray, OCLArray, Image, _OCLImage], distance_map: Union[ndarray, OCLArray, Image, _OCLImage] = None, n: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Takes two label maps and determines the centroid distances from each label in the first label image to the labels in the second. The average distance of the n nearest neighbors is then averaged and stored in a parametric distance map image.

Parameters
  • labels (Image) –

  • other_labels (Image) –

  • distance_map (Image, optional) –

  • n (Number, optional) –

Return type

distance_map

pyclesperanto_prototype.average_neighbor_distance_map(labels: Union[ndarray, OCLArray, Image, _OCLImage], distance_map: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label map, determines which labels touch and replaces every label with the average distance to their neighboring labels.

To determine the distances, the centroid of the labels is determined internally.

Parameters
  • input (Image) –

  • destination (Image, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_averageNeighborDistanceMap

pyclesperanto_prototype.binary_and(operand1: Union[ndarray, OCLArray, Image, _OCLImage], operand2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes a binary image (containing pixel values 0 and 1) from two images X and Y by connecting pairs of pixels x and y with the binary AND operator &. All pixel values except 0 in the input images are interpreted as 1.

<pre>f(x, y) = x & y</pre>

Parameters
  • operand1 (Image) – The first binary input image to be processed.

  • operand2 (Image) – The second binary input image to be processed.

  • destination (Image, optional) – The output image where results are written into.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.binary_and(operand1, operand2, destination)

References

1

https://clij.github.io/clij2-docs/reference_binaryAnd

pyclesperanto_prototype.binary_edge_detection(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines pixels/voxels which are on the surface of binary objects and sets only them to 1 in the destination image. All other pixels are set to 0.

Parameters
  • source (Image) – The binary input image where edges will be searched.

  • destination (Image, optional) – The output image where edge pixels will be 1.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.binary_edge_detection(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_binaryEdgeDetection

pyclesperanto_prototype.binary_intersection(operand1: Union[ndarray, OCLArray, Image, _OCLImage], operand2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes a binary image (containing pixel values 0 and 1) from two images X and Y by connecting pairs of pixels x and y with the binary AND operator &. All pixel values except 0 in the input images are interpreted as 1.

<pre>f(x, y) = x & y</pre>

Parameters
  • operand1 (Image) – The first binary input image to be processed.

  • operand2 (Image) – The second binary input image to be processed.

  • destination (Image, optional) – The output image where results are written into.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.binary_and(operand1, operand2, destination)

References

1

https://clij.github.io/clij2-docs/reference_binaryAnd

pyclesperanto_prototype.binary_not(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes a binary image (containing pixel values 0 and 1) from an image X by negating its pixel values x using the binary NOT operator !

All pixel values except 0 in the input image are interpreted as 1.

<pre>f(x) = !x</pre>

Parameters
  • source (Image) – The binary input image to be inverted.

  • destination (Image, optional) – The output image where results are written into.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.binary_not(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_binaryNot

pyclesperanto_prototype.binary_or(operand1: Union[ndarray, OCLArray, Image, _OCLImage], operand2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes a binary image (containing pixel values 0 and 1) from two images X and Y by connecting pairs of pixels x and y with the binary OR operator |.

All pixel values except 0 in the input images are interpreted as 1.<pre>f(x, y) = x | y</pre>

Parameters
  • operand1 (Image) – The first binary input image to be processed.

  • operand2 (Image) – The second binary input image to be processed.

  • destination (Image, optional) – The output image where results are written into.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.binary_or(operand1, operand2, destination)

References

1

https://clij.github.io/clij2-docs/reference_binaryOr

pyclesperanto_prototype.binary_subtract(minuend: Union[ndarray, OCLArray, Image, _OCLImage], subtrahend: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Subtracts one binary image from another.

Parameters
  • minuend (Image) – The first binary input image to be processed.

  • subtrahend (Image) – The second binary input image to be subtracted from the first.

  • destination (Image, optional) – The output image where results are written into.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.binary_subtract(minuend, subtrahend, destination)

References

1

https://clij.github.io/clij2-docs/reference_binarySubtract

pyclesperanto_prototype.binary_union(operand1: Union[ndarray, OCLArray, Image, _OCLImage], operand2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes a binary image (containing pixel values 0 and 1) from two images X and Y by connecting pairs of pixels x and y with the binary OR operator |.

All pixel values except 0 in the input images are interpreted as 1.<pre>f(x, y) = x | y</pre>

Parameters
  • operand1 (Image) – The first binary input image to be processed.

  • operand2 (Image) – The second binary input image to be processed.

  • destination (Image, optional) – The output image where results are written into.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.binary_or(operand1, operand2, destination)

References

1

https://clij.github.io/clij2-docs/reference_binaryOr

pyclesperanto_prototype.binary_xor(operand1: Union[ndarray, OCLArray, Image, _OCLImage], operand2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes a binary image (containing pixel values 0 and 1) from two images X and Y by connecting pairs of pixels x and y with the binary operators AND &, OR | and NOT ! implementing the XOR operator.

All pixel values except 0 in the input images are interpreted as 1.

<pre>f(x, y) = (x & !y) | (!x & y)</pre>

Parameters
  • operand1 (Image) – The first binary input image to be processed.

  • operand2 (Image) – The second binary input image to be processed.

  • destination (Image, optional) – The output image where results are written into.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.binary_xor(operand1, operand2, destination)

References

1

https://clij.github.io/clij2-docs/reference_binaryXOr

pyclesperanto_prototype.block_enumerate(src: Union[ndarray, OCLArray, Image, _OCLImage], src_sums: Union[ndarray, OCLArray, Image, _OCLImage], dst: Union[ndarray, OCLArray, Image, _OCLImage] = None, blocksize: int = 256) Union[ndarray, OCLArray, Image, _OCLImage]

Enumerates pixels with value 1 in a one-dimensional image

For example handing over the image [0, 1, 1, 0, 1, 0, 1, 1] would be processed to an image [0, 1, 2, 0, 3, 0, 4, 5] This functionality is important in connected component labeling.

Processing is accelerated by paralellization in blocks. Therefore, handing over pre-computed block sums is neccessary (see also sum_reduction_x). In the above example, with blocksize 4, that would be the sum array: [2, 3] Note that the block size when calling this function and sum_reduction must be identical

Parameters
  • src (Image) – input binary vector image

  • src_sums (Image) – pre-computed sums of blocks

  • dst (Image, optional) – output enumerated vector image

  • blocksize (int, optional) – blocksize; must correspond correctly to how the block sums were computed

Return type

dst

pyclesperanto_prototype.bottom_hat_box(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius_x: float = 1, radius_y: float = 1, radius_z: float = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Apply a bottom-hat filter for background subtraction to the input image.

Parameters
  • source (Image) – The input image where the background is subtracted from.

  • destination (Image, optional) – The output image where results are written into.

  • radius_x (Image, optional) – Radius of the background determination region in X.

  • radius_y (Image, optional) – Radius of the background determination region in Y.

  • radius_z (Image, optional) – Radius of the background determination region in Z.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.bottom_hat_box(input, destination, radiusX, radiusY, radiusZ)

References

1

https://clij.github.io/clij2-docs/reference_bottomHatBox

pyclesperanto_prototype.bottom_hat_sphere(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius_x: float = 1, radius_y: float = 1, radius_z: float = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Applies a bottom-hat filter for background subtraction to the input image.

Parameters
  • source (Image) – The input image where the background is subtracted from.

  • destination (Image, optional) – The output image where results are written into.

  • radius_x (Image, optional) – Radius of the background determination region in X.

  • radius_y (Image, optional) – Radius of the background determination region in Y.

  • radius_z (Image, optional) – Radius of the background determination region in Z.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.bottom_hat_sphere(input, destination, radiusX, radiusY, radiusZ)

References

1

https://clij.github.io/clij2-docs/reference_bottomHatSphere

pyclesperanto_prototype.bounding_box(source: Union[ndarray, OCLArray, Image, _OCLImage])

Determines the bounding box of all non-zero pixels in a binary image.

If called from macro, the positions will be stored in a new row of ImageJs Results table in the columns ‘BoundingBoxX’, ‘BoundingBoxY’, ‘BoundingBoxZ’, ‘BoundingBoxWidth’, ‘BoundingBoxHeight’ ‘BoundingBoxDepth’.In case of 2D images Z and depth will be zero.

Parameters

source (Image) –

Returns

in 2D: min_x, min_y, max_x, max_y in 3D: min_x, min_y, min_z, max_x, max_y, max_z

Return type

list of ints

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.bounding_box(source)

References

1

https://clij.github.io/clij2-docs/reference_boundingBox

pyclesperanto_prototype.cbrt(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the cubic root of each pixel.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

pyclesperanto_prototype.center_of_mass(source: Union[ndarray, OCLArray, Image, _OCLImage])

Determines the center of mass of an image or image stack.

It writes the result in the results table in the columns MassX, MassY and MassZ.

Parameters

source (Image) –

Returns

list of coordinates

Return type

[x,y,z]

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.center_of_mass(source)

References

1

https://clij.github.io/clij2-docs/reference_centerOfMass

pyclesperanto_prototype.centroids_of_background_and_labels(source: Union[ndarray, OCLArray, Image, _OCLImage], pointlist_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

See centroids_of_labels

pyclesperanto_prototype.centroids_of_labels(labels: Union[ndarray, OCLArray, Image, _OCLImage], pointlist_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, include_background: bool = False) Union[ndarray, OCLArray, Image, _OCLImage]

Determines the centroids of all labels in a label image or image stack.

It writes the resulting coordinates in a pointlist image. Depending on the dimensionality d of the labelmap and the number of labels n, the pointlist image will have n*d pixels.

Parameters
  • labels (Image) – input label image

  • pointlist_destination (Image, optional) – target image of size d*n for a d-dimensional label image with n labels. In case the background should be determined as well, this image needs to be one pixel wider

  • include_background (bool, optional) – measure the centroid of the background as well

Return type

pointlist_destination

References

1

https://clij.github.io/clij2-docs/reference_centroidsOfLabels

pyclesperanto_prototype.clip(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, a_min: float = None, a_max: float = None) Union[ndarray, OCLArray, Image, _OCLImage]

Limits the range of values in an image.

This function is supposed to work similarly as its counter part in numpy [1].

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • a_min (float, optional) – new, lower limit of the intensity range

  • a_max (float, optional) – new, upper limit of the intensity range

Return type

destination

References

1

https://numpy.org/doc/stable/reference/generated/numpy.clip.html

pyclesperanto_prototype.close_index_gaps_in_label_map(source: Union[ndarray, OCLArray, Image, _OCLImage], output: Union[ndarray, OCLArray, Image, _OCLImage] = None, blocksize: int = 4096) Union[ndarray, OCLArray, Image, _OCLImage]

Analyses a label map and if there are gaps in the indexing (e.g. label 5 is not present) all subsequent labels will be relabelled.

Thus, afterwards number of labels and maximum label index are equal. This operation is mostly performed on the CPU.

Parameters
  • labeling_input (Image) –

  • labeling_destination (Image, optional) –

  • blocksize (int, optional) – Renumbering is done in blocks for performance reasons. Change the blocksize to adapt to your data and hardware

Return type

labeling_destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.relabel_sequential(labeling_input, labeling_destination)

References

1

https://clij.github.io/clij2-docs/reference_closeIndexGapsInLabelMap

pyclesperanto_prototype.closing_box(input_image: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius_x: int = 0, radius_y: int = 0, radius_z: int = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Closing operator, box-shaped

Applies morphological closing to intensity images using a box-shaped footprint. This operator also works with binary images.

Parameters
  • input_image (Image) –

  • destination (Image, optional) –

  • radius_x (int, optional) –

  • radius_y (int, optional) –

  • radius_z (int, optional) –

Return type

destination

pyclesperanto_prototype.closing_labels(labels_input: Union[ndarray, OCLArray, Image, _OCLImage], labels_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius: int = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Apply a morphological closing operation to a label image.

The operation consists of iterative dilation and erosion of the labels. With every iteration, box and diamond/sphere structuring elements are used and thus, the operation has an octagon as structuring element.

Notes

  • This operation assumes input images are isotropic.

Parameters
  • labels_input (Image) –

  • labels_destination (Image, optional) –

  • radius (int, optional) –

Returns

labels_destination

Return type

Image

pyclesperanto_prototype.closing_sphere(input_image: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius_x: int = 1, radius_y: int = 1, radius_z: int = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Closing operator, sphere-shaped

Applies morphological closing to intensity images using a sphere-shaped footprint. This operator also works with binary images.

Parameters
  • input_image (Image) –

  • destination (Image, optional) –

  • radius_x (int, optional) –

  • radius_y (int, optional) –

  • radius_z (int, optional) –

Returns

destination

Return type

Image

pyclesperanto_prototype.combine_horizontally(stack1: Union[ndarray, OCLArray, Image, _OCLImage], stack2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Combines two images or stacks in X.

Parameters
  • stack1 (Image) –

  • stack2 (Image) –

  • destination (Image, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_combineHorizontally

pyclesperanto_prototype.combine_labels(labels_input1: Union[ndarray, OCLArray, Image, _OCLImage], labels_input2: Union[ndarray, OCLArray, Image, _OCLImage], labels_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Combines two label images by adding labels of a given label image to another. Labels in the second image overwrite labels in the first passed image. Afterwards, labels are relabeled sequentially.

Parameters
  • labels_input1 (Image) – label image to add labels to

  • labels_input2 (Image) – label image to add labels from

  • labels_destination (Image, optional) – result

Return type

labels_destination

pyclesperanto_prototype.combine_vertically(stack1: Union[ndarray, OCLArray, Image, _OCLImage], stack2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Combines two images or stacks in Y.

Parameters
  • stack1 (Image) –

  • stack2 (Image) –

  • destination (Image, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_combineVertically

pyclesperanto_prototype.concatenate_stacks(stack1: Union[ndarray, OCLArray, Image, _OCLImage], stack2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Concatenates two stacks in Z.

Parameters
  • stack1 (Image) –

  • stack2 (Image) –

  • destination (Image, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_concatenateStacks

pyclesperanto_prototype.connected_components_labeling_box(binary_input: ~typing.Union[~numpy.ndarray, ~pyclesperanto_prototype._tier0._pycl.OCLArray, ~pyopencl._cl.Image, ~pyclesperanto_prototype._tier0._pycl._OCLImage], labeling_destination: ~typing.Union[~numpy.ndarray, ~pyclesperanto_prototype._tier0._pycl.OCLArray, ~pyopencl._cl.Image, ~pyclesperanto_prototype._tier0._pycl._OCLImage] = None, flagged_nonzero_minimum_filter: callable = <function nonzero_minimum_box>) Union[ndarray, OCLArray, Image, _OCLImage]

Performs connected components analysis inspecting the box neighborhood of every pixel to a binary image and generates a label map.

Parameters
  • binary_input (Image) –

  • labeling_destination (Image, optional) –

Return type

labeling_destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.connected_components_labeling_box(binary_input, labeling_destination)

References

1

https://clij.github.io/clij2-docs/reference_connectedComponentsLabelingBox

pyclesperanto_prototype.connected_components_labeling_diamond(binary_input: Union[ndarray, OCLArray, Image, _OCLImage], labeling_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Performs connected components analysis inspecting the diamond neighborhood of every pixel to a binary image and generates a label map.

Parameters
  • binary_input (Image) –

  • labeling_destination (Image, optional) –

Return type

labeling_destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.connected_components_labeling_diamond(binary_input, labeling_destination)

References

1

https://clij.github.io/clij2-docs/reference_connectedComponentsLabelingDiamond

pyclesperanto_prototype.convolve(source: Union[ndarray, OCLArray, Image, _OCLImage], convolution_kernel: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Convolve the image with a given kernel image.

It is recommended that the kernel image has an odd size in X, Y and Z.

Parameters
  • source (Image) –

  • convolution_kernel (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.convolve(source, convolution_kernel, destination)

References

1

https://clij.github.io/clij2-docs/reference_convolve

pyclesperanto_prototype.copy(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Copies an image.

<pre>f(x) = x</pre>

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.copy(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_copy

pyclesperanto_prototype.copy_horizontal_slice(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, slice_index: int = 0) Union[ndarray, OCLArray, Image, _OCLImage]

This method has two purposes: It copies a 2D image to a given slice y position in a 3D image stack or It copies a given slice at position y in an image stack to a 2D image.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • slice_index (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.copy_slice(source, destination, slice_index)

References

1

https://clij.github.io/clij2-docs/reference_copySlice

pyclesperanto_prototype.copy_slice(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, slice_index: int = 0) Union[ndarray, OCLArray, Image, _OCLImage]

This method has two purposes: It copies a 2D image to a given slice z position in a 3D image stack or It copies a given slice at position z in an image stack to a 2D image.

The first case is only available via ImageJ macro. If you are using it, it is recommended that the target 3D image already pre-exists in GPU memory before calling this method. Otherwise, CLIJ create the image stack with z planes.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • slice_index (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.copy_slice(source, destination, slice_index)

References

1

https://clij.github.io/clij2-docs/reference_copySlice

pyclesperanto_prototype.copy_vertical_slice(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, slice_index: int = 0) Union[ndarray, OCLArray, Image, _OCLImage]

This method has two purposes: It copies a 2D image to a given slice x position in a 3D image stack or It copies a given slice at position x in an image stack to a 2D image.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • slice_index (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.copy_slice(source, destination, slice_index)

References

1

https://clij.github.io/clij2-docs/reference_copySlice

pyclesperanto_prototype.count_touching_neighbors(touch_matrix: Union[ndarray, OCLArray, Image, _OCLImage], touching_neighbors_count_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, ignore_background: bool = True) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a touch matrix as input and delivers a vector with number of touching neighbors per label as a vector.

Note: Background is considered as something that can touch. To ignore touches with background, hand over a touch matrix where the first column (index = 0) has been set to 0. Use set_column for that.

Parameters
  • touch_matrix (Image) –

  • touching_neighbors_count_destination (Image, optional) –

Return type

touching_neighbors_count_destination

References

1

https://clij.github.io/clij2-docs/reference_countTouchingNeighbors

pyclesperanto_prototype.create(dimensions, dtype=<class 'numpy.float32'>)

Convenience method for creating images on the GPU. This method basically does the same as in CLIJ:

https://github.com/clij/clij2/blob/master/src/main/java/net/haesleinhuepf/clij2/CLIJ2.java#L156

Parameters

dimensions – size of the image

Returns

OCLArray, potentially with random values

pyclesperanto_prototype.crop(source: Union[ndarray, OCLArray, Image, _OCLImage], output: Union[ndarray, OCLArray, Image, _OCLImage] = None, start_x: int = 0, start_y: int = 0, start_z: int = 0, width: int = 1, height: int = 1, depth: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Crops a given sub-stack out of a given image stack.

Note: If the destination image pre-exists already, it will be overwritten and keep it’s dimensions.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • start_x (Number, optional) –

  • start_y (Number, optional) –

  • start_z (Number, optional) –

  • width (Number, optional) –

  • height (Number, optional) –

  • depth (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.crop(source, destination, start_x, start_y, start_z, width, height, depth)

References

1

https://clij.github.io/clij2-docs/reference_crop3D

pyclesperanto_prototype.crop_border(input_image: Union[ndarray, OCLArray, Image, _OCLImage], destination_image: Union[ndarray, OCLArray, Image, _OCLImage] = None, border_size: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Crops an image by removing the outer pixels, per default 1.

Notes

  • To make sure the output image has the right size, provide destination_image=None.

Parameters
  • input_image (Image) –

  • destination_image (Image) –

  • border_size (int) –

Return type

destination_image

pyclesperanto_prototype.cubic_root(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the cubic root of each pixel.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

pyclesperanto_prototype.degrees_to_radians(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Converts radians to degrees

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

pyclesperanto_prototype.deskew_x(input_image: Union[ndarray, OCLArray, Image, _OCLImage], output_image: Union[ndarray, OCLArray, Image, _OCLImage] = None, angle_in_degrees: float = 31.8, voxel_size_x: float = 1, voxel_size_y: float = 1, voxel_size_z: float = 1, scale_factor: float = 1, linear_interpolation: bool = False) Union[ndarray, OCLArray, Image, _OCLImage]

Deskew an image stack as acquired with oblique plane light-sheet microscopy.

Parameters
  • input_image (Image) – raw image data with Z-planes representing the tilted / swept acquisition plane

  • output_image (Image, optional) – reconstructed image data with Z-planes in proximal-distal oriental from the objective

  • angle_in_degrees (float, optional) – default: 31.8 degrees

  • voxel_size_x (float, optional) –

  • voxel_size_y (float, optional) –

  • voxel_size_z (float, optional) – default: 1 micron Voxel size, typically provided in microns

  • scale_factor (float, optional) – default: 1 If the resulting image becomes too huge, it is possible to reduce output image size by this factor. The isotropic voxel size of the output image will then be voxel_size_x / scaling_factor.

  • linear_interpolation (bool, optional) – If true, bi-/tri-linear interpolation will be applied, if hardware supports it. If false, nearest-neighbor interpolation wille be applied.

Return type

output_image

pyclesperanto_prototype.deskew_y(input_image: Union[ndarray, OCLArray, Image, _OCLImage], output_image: Union[ndarray, OCLArray, Image, _OCLImage] = None, angle_in_degrees: float = 30, voxel_size_x: float = 1, voxel_size_y: float = 1, voxel_size_z: float = 1, scale_factor: float = 1, linear_interpolation: bool = False) Union[ndarray, OCLArray, Image, _OCLImage]

Deskew an image stack as acquired with oblique plane light-sheet microscopy.

Parameters
  • input_image (Image) – raw image data with Z-planes representing the tilted / swept acquisition plane

  • output_image (Image, optional) – reconstructed image data with Z-planes in proximal-distal oriental from the objective

  • angle_in_degrees (float, optional) – default: 30 degrees

  • voxel_size_x (float, optional) –

  • voxel_size_y (float, optional) –

  • voxel_size_z (float, optional) – default: 1 micron Voxel size, typically provided in microns

  • scale_factor (float, optional) – default: 1 If the resulting image becomes too huge, it is possible to reduce output image size by this factor. The isotropic voxel size of the output image will then be voxel_size_x / scaling_factor.

  • linear_interpolation (bool, optional) – If true, bi-/tri-linear interpolation will be applied, if hardware supports it. If false, nearest-neighbor interpolation wille be applied.

Return type

output_image

pyclesperanto_prototype.detect_label_edges(label_source: Union[ndarray, OCLArray, Image, _OCLImage], binary_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a labelmap and returns an image where all pixels on label edges are set to 1 and all other pixels to 0.

Parameters
  • label_map (Image) –

  • edge_image_destination (Image, optional) –

Return type

edge_image_destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.detect_label_edges(label_map, edge_image_destination)

References

1

https://clij.github.io/clij2-docs/reference_detectLabelEdges

pyclesperanto_prototype.detect_maxima_box(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius_x: int = 0, radius_y: int = 0, radius_z: int = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Detects local maxima in a given square/cubic neighborhood.

Pixels in the resulting image are set to 1 if there is no other pixel in a given radius which has a higher intensity, and to 0 otherwise.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • radius_x (Number, optional) –

  • radius_y (Number, optional) –

  • radius_z (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.detect_maxima_box(source, destination, 1, 1, 1)

References

1

https://clij.github.io/clij2-docs/reference_detectMaximaBox

pyclesperanto_prototype.detect_minima_box(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius_x: int = 0, radius_y: int = 0, radius_z: int = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Detects local maxima in a given square/cubic neighborhood.

Pixels in the resulting image are set to 1 if there is no other pixel in a given radius which has a lower intensity, and to 0 otherwise.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • radius_x (Number, optional) –

  • radius_y (Number, optional) –

  • radius_z (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.detect_minima_box(source, destination, 1, 1, 1)

References

1

https://clij.github.io/clij2-docs/reference_detectMaximaBox

pyclesperanto_prototype.difference_of_gaussian(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, sigma1_x: float = 2, sigma1_y: float = 2, sigma1_z: float = 2, sigma2_x: float = 2, sigma2_y: float = 2, sigma2_z: float = 2) Union[ndarray, OCLArray, Image, _OCLImage]

Applies Gaussian blur to the input image twice with different sigma values resulting in two images which are then subtracted from each other.

It is recommended to apply this operation to images of type Float (32 bit) as results might be negative.

Parameters
  • source (Image) – The input image to be processed.

  • destination (Image, optional) – The output image where results are written into.

  • sigma1_x (float, optional) – Sigma of the first Gaussian filter in x

  • sigma1_y (float, optional) – Sigma of the first Gaussian filter in y

  • sigma1_z (float, optional) – Sigma of the first Gaussian filter in z

  • sigma2_x (float, optional) – Sigma of the second Gaussian filter in x

  • sigma2_y (float, optional) – Sigma of the second Gaussian filter in y

  • sigma2_z (float, optional) – Sigma of the second Gaussian filter in z

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.difference_of_gaussian(input, destination, sigma1x, sigma1y, sigma1z, sigma2x, sigma2y, sigma2z)

References

1

https://clij.github.io/clij2-docs/reference_differenceOfGaussian3D

pyclesperanto_prototype.dilate_box(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes a binary image with pixel values 0 and 1 containing the binary dilation of a given input image.

The dilation takes the Moore-neighborhood (8 pixels in 2D and 26 pixels in 3d) into account. The pixels in the input image with pixel value not equal to 0 will be interpreted as 1.

This method is comparable to the ‘Dilate’ menu in ImageJ in case it is applied to a 2D image. The only difference is that the output image contains values 0 and 1 instead of 0 and 255.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.dilate_box(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_dilateBox

pyclesperanto_prototype.dilate_box_slice_by_slice(src: Union[ndarray, OCLArray, Image, _OCLImage], dst: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes a binary image with pixel values 0 and 1 containing the binary dilation of a given input image.

The dilation takes the Moore-neighborhood (8 pixels in 2D and 26 pixels in 3d) into account. The pixels in the input image with pixel value not equal to 0 will be interpreted as 1.

This method is comparable to the ‘Dilate’ menu in ImageJ in case it is applied to a 2D image. The only difference is that the output image contains values 0 and 1 instead of 0 and 255.

This filter is applied slice by slice in 2D.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.dilate_box_slice_by_slice(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_dilateBoxSliceBySlice

pyclesperanto_prototype.dilate_labels(labeling_source: Union[ndarray, OCLArray, Image, _OCLImage], labeling_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius: int = 2) Union[ndarray, OCLArray, Image, _OCLImage]

Dilates labels to a larger size. No label overwrites another label. Similar to the implementation in scikit-image [2] and MorpholibJ[3]

Notes

  • This operation assumes input images are isotropic.

Parameters
  • labels_input (Image) – label image to erode

  • labels_destination (Image, optional, optional) – result

  • radius (int, optional) –

Return type

labels_destination

See also

, ,

pyclesperanto_prototype.dilate_sphere(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes a binary image with pixel values 0 and 1 containing the binary dilation of a given input image.

The dilation takes the von-Neumann-neighborhood (4 pixels in 2D and 6 pixels in 3d) into account. The pixels in the input image with pixel value not equal to 0 will be interpreted as 1.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.dilate_sphere(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_dilateSphere

pyclesperanto_prototype.dilate_sphere_slice_by_slice(src: Union[ndarray, OCLArray, Image, _OCLImage], dst: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes a binary image with pixel values 0 and 1 containing the binary dilation of a given input image.

The dilation takes the von-Neumann-neighborhood (4 pixels in 2D and 6 pixels in 3d) into account. The pixels in the input image with pixel value not equal to 0 will be interpreted as 1.

This filter is applied slice by slice in 2D.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.dilate_sphere_slice_by_slice(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_dilateSphereSliceBySlice

pyclesperanto_prototype.distance_matrix_to_mesh(pointlist: Union[ndarray, OCLArray, Image, _OCLImage], distance_matrix: Union[ndarray, OCLArray, Image, _OCLImage], mesh_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, maximum_distance: float = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Generates a mesh from a distance matric and a list of point coordinates.

Takes a pointlist with dimensions n*d with n point coordinates in d dimensions and a distance matrix of size n*n to draw lines from all points to points if the corresponding pixel in the distance matrix is smaller than a given distance threshold.

Parameters
  • pointlist (Image) –

  • distance_matrix (Image) –

  • mesh_destination (Image, optional) –

  • maximum_distance (Number, optional) –

Return type

mesh_destination

References

1

https://clij.github.io/clij2-docs/reference_distanceMatrixToMesh

pyclesperanto_prototype.divide_by_gaussian_background(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, sigma_x: float = 2, sigma_y: float = 2, sigma_z: float = 2) Union[ndarray, OCLArray, Image, _OCLImage]

Applies Gaussian blur to the input image and divides the original by the result.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • sigma_x (Number, optional) –

  • sigma_y (Number, optional) –

  • sigma_z (Number, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_divideByGaussianBackground

pyclesperanto_prototype.divide_images(divident: Union[ndarray, OCLArray, Image, _OCLImage], divisor: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Divides two images X and Y by each other pixel wise.

<pre>f(x, y) = x / y</pre>

Parameters
  • divident (Image) –

  • divisor (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.divide_images(divident, divisor, destination)

References

1

https://clij.github.io/clij2-docs/reference_divideImages

pyclesperanto_prototype.divide_scalar_by_image(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, scalar: float = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Divides a scalar by an image pixel by pixel.

<pre>f(x, s) = s / x</pre>

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • scalar (Number, optional) –

Return type

destination

pyclesperanto_prototype.downsample_slice_by_slice_half_median(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Scales an image using scaling factors 0.5 for X and Y dimensions. The Z dimension stays untouched.

Thus, each slice is processed separately. The median method is applied. Thus, each pixel value in the destination image equals to the median of four corresponding pixels in the source image.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_downsampleSliceBySliceHalfMedian

pyclesperanto_prototype.downsample_xy_by_half_median(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Scales an image using scaling factors 0.5 for X and Y dimensions. The Z dimension stays untouched.

Thus, each slice is processed separately. The median method is applied. Thus, each pixel value in the destination image equals to the median of four corresponding pixels in the source image.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_downsampleSliceBySliceHalfMedian

pyclesperanto_prototype.draw_angle_mesh_between_touching_labels(labels: Union[ndarray, OCLArray, Image, _OCLImage], angle_mesh_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Starting from a label map, draw lines between touching neighbors resulting in a mesh.

The end points of the lines correspond to the centroids of the labels. The intensity of the lines corresponds to the angle in degrees between these labels (in pixels or voxels).

Parameters
  • labels (Image) –

  • angle_mesh_destination (Image) –

Return type

angle_mesh_destination

References

pyclesperanto_prototype.draw_box(destination: Union[ndarray, OCLArray, Image, _OCLImage], x: int = 0, y: int = 0, z: int = 0, width: int = 1, height: int = 1, depth: int = 1, value: float = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Draws a box at a given start point with given size. All pixels other than in the box are untouched. Consider using set(buffer, 0); in advance.

Parameters
  • destination (Image) –

  • x (Number, optional) –

  • y (Number, optional) –

  • z (Number, optional) –

  • width (Number, optional) –

  • height (Number, optional) –

  • depth (Number, optional) –

  • value (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.draw_box(destination, x, y, z, width, height, depth, value)

References

1

https://clij.github.io/clij2-docs/reference_drawBox

pyclesperanto_prototype.draw_distance_mesh_between_proximal_labels(labels: Union[ndarray, OCLArray, Image, _OCLImage], distance_mesh_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, maximum_distance: float = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Starting from a label map, draw lines between neighbors that a closer than a defined upper bound resulting in a mesh.

The end points of the lines correspond to the centroids of the labels. The intensity of the lines corresponds to the distance between these labels (in pixels or voxels).

Notes

  • This operation assumes input images are isotropic.

Parameters
  • labels (Image) –

  • distance_mesh_destination (Image, optional) –

  • maximum_distance (float, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_drawDistanceMeshBetweenTouchingLabels

pyclesperanto_prototype.draw_distance_mesh_between_touching_labels(labels: Union[ndarray, OCLArray, Image, _OCLImage], distance_mesh_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Starting from a label map, draw lines between touching neighbors resulting in a mesh.

The end points of the lines correspond to the centroids of the labels. The intensity of the lines corresponds to the distance between these labels (in pixels or voxels).

Notes

  • This operation assumes input images are isotropic.

Parameters
  • labels (Image) –

  • distance_mesh_destination (Image, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_drawDistanceMeshBetweenTouchingLabels

pyclesperanto_prototype.draw_line(destination: Union[ndarray, OCLArray, Image, _OCLImage], x1: float = 0, y1: float = 0, z1: float = 0, x2: float = 1, y2: float = 1, z2: float = 1, thickness: float = 1, value: float = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Draws a line between two points with a given thickness.

All pixels other than on the line are untouched. Consider using set(buffer, 0); in advance.

Parameters
  • destination (Image) –

  • x1 (Number, optional) –

  • y1 (Number, optional) –

  • z1 (Number, optional) –

  • x2 (Number, optional) –

  • y2 (Number, optional) –

  • z2 (Number, optional) –

  • thickness (Number, optional) – technically specifying the radius including pixels around an inifitely thin line

  • value (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.draw_line(destination, x1, y1, z1, x2, y2, z2, thickness, value)

References

1

https://clij.github.io/clij2-docs/reference_drawLine

pyclesperanto_prototype.draw_mesh_between_labels_with_touch_portion_in_range(labels: Union[ndarray, OCLArray, Image, _OCLImage], mesh_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, minimum_touch_portion: float = 0, maximum_touch_portion: float = 1.1)

Draws a mesh between label centroids where the labels touch portion lies within a given range. Minimum and maximum of that specified range are excluded.

Notes

  • This operation assumes input images are isotropic.

Parameters
  • labels (Image) –

  • mesh_destination (Image, optional) –

  • minimum_touch_portion (float, optional) –

  • maximum_touch_portion (float, optional) –

Return type

mesh_destination

pyclesperanto_prototype.draw_mesh_between_n_closest_labels(labels: Union[ndarray, OCLArray, Image, _OCLImage], mesh_target: Union[ndarray, OCLArray, Image, _OCLImage] = None, n: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Starting from a label map, draw lines between n closest labels for each label resulting in a mesh.

The end points of the lines correspond to the centroids of the labels.

Notes

  • This operation assumes input images are isotropic.

Parameters
  • labels (Image) –

  • mesh_target (Image, optional) –

  • n (Number, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_drawMeshBetweenNClosestLabels

pyclesperanto_prototype.draw_mesh_between_n_most_touching_labels(labels: Union[ndarray, OCLArray, Image, _OCLImage], mesh_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, n: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Draws a mesh between most touching neighbors

Notes

  • This operation assumes input images are isotropic.

Parameters
  • labels (Image) –

  • mesh_destination (Image, optional) –

  • n (int) –

pyclesperanto_prototype.draw_mesh_between_proximal_labels(labels: Union[ndarray, OCLArray, Image, _OCLImage], mesh_target: Union[ndarray, OCLArray, Image, _OCLImage] = None, maximum_distance: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Starting from a label map, draw lines between labels that are closer than a given distance resulting in a mesh.

The end points of the lines correspond to the centroids of the labels.

Notes

  • This operation assumes input images are isotropic.

Parameters
  • labels (Image) –

  • mesh_target (Image, optional) –

  • maximum_distance (Number, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_drawMeshBetweenProximalLabels

pyclesperanto_prototype.draw_mesh_between_touching_labels(labels: Union[ndarray, OCLArray, Image, _OCLImage], distance_mesh_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Starting from a label map, draw lines between touching neighbors resulting in a mesh.

The end points of the lines correspond to the centroids of the labels.

Parameters
  • labels (Image) –

  • distance_mesh_destination (Image, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_drawMeshBetweenTouchingLabels

pyclesperanto_prototype.draw_sphere(destination: Union[ndarray, OCLArray, Image, _OCLImage], x: float = 0, y: float = 0, z: float = 0, radius_x: float = 1, radius_y: float = 1, radius_z: float = 1, value: float = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Draws a sphere around a given point with given radii in x, y and z (if 3D).

All pixels other than in the sphere are untouched. Consider using

set(buffer, 0); in advance.

Parameters
  • destination (Image) –

  • x (Number, optional) –

  • y (Number, optional) –

  • z (Number, optional) –

  • radius_x (Number, optional) –

  • radius_y (Number, optional) –

  • radius_z (Number, optional) –

  • value (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.draw_sphere(destination, x, y, z, radius_x, radius_y, radius_z, value)

References

1

https://clij.github.io/clij2-docs/reference_drawSphere

pyclesperanto_prototype.draw_touch_portion_mesh_between_touching_labels(labels: Union[ndarray, OCLArray, Image, _OCLImage], touch_portion_mesh_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Starting from a label map, draw lines between touching neighbors resulting in a mesh.

The end points of the lines correspond to the centroids of the labels. The intensity of the lines corresponds to the amount the two labels touch divided by the number of border voxels on both labels. Note: label borders at image borders are ignored in this calculation.

Notes

  • This operation assumes input images are isotropic.

Parameters
  • labels (Image) –

  • touch_portion_mesh_destination (Image, optional) –

Return type

touch_portion_mesh_destination

pyclesperanto_prototype.draw_touch_portion_ratio_mesh_between_touching_labels(labels: Union[ndarray, OCLArray, Image, _OCLImage], touch_portion_ratio_mesh_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Starting from a label map, draw lines between touching neighbors resulting in a mesh.

The end points of the lines correspond to the centroids of the labels. The intensity of the lines corresponds to the ratio between the amount the two labels touch divided by the number of border voxels on both labels. The smaller touch portion is divided by the larger touch portion. Thus, lines in this mesh have values larger or equal to 1. Note: label borders at image borders are ignored in this calculation.

Notes

  • This operation assumes input images are isotropic.

Parameters
  • labels (Image) –

  • touch_portion_ratio_mesh_destination (Image, optional) –

Return type

touch_portion_mesh_destination

pyclesperanto_prototype.equal(source1: Union[ndarray, OCLArray, Image, _OCLImage], source2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines if two images A and B equal pixel wise.

<pre>f(a, b) = 1 if a == b; 0 otherwise.</pre>

Parameters
  • source1 (Image) – The first image to be compared with.

  • source2 (Image) – The second image to be compared with the first.

  • destination (Image, optional) – The resulting binary image where pixels will be 1 only if source1

  • pixel. (and source2 equal in the given) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.equal(source1, source2, destination)

References

1

https://clij.github.io/clij2-docs/reference_equal

pyclesperanto_prototype.equal_constant(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, constant: float = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Determines if an image A and a constant b are equal.

<pre>f(a, b) = 1 if a == b; 0 otherwise.</pre>

Parameters
  • source (Image) – The image where every pixel is compared to the constant.

  • destination (Image, optional) – The resulting binary image where pixels will be 1 only if source1

  • pixel. (and source2 equal in the given) –

  • constant (float, optional) – The constant where every pixel is compared to.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.equal_constant(source, destination, constant)

References

1

https://clij.github.io/clij2-docs/reference_equalConstant

pyclesperanto_prototype.erode_box(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes a binary image with pixel values 0 and 1 containing the binary erosion of a given input image.

The erosion takes the Moore-neighborhood (8 pixels in 2D and 26 pixels in 3d) into account. The pixels in the input image with pixel value not equal to 0 will be interpreted as 1.

This method is comparable to the ‘Erode’ menu in ImageJ in case it is applied to a 2D image. The only difference is that the output image contains values 0 and 1 instead of 0 and 255.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.erode_box(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_erodeBox

pyclesperanto_prototype.erode_box_slice_by_slice(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes a binary image with pixel values 0 and 1 containing the binary erosion of a given input image.

The erosion takes the Moore-neighborhood (8 pixels in 2D and 26 pixels in 3d) into account. The pixels in the input image with pixel value not equal to 0 will be interpreted as 1.

This method is comparable to the ‘Erode’ menu in ImageJ in case it is applied to a 2D image. The only difference is that the output image contains values 0 and 1 instead of 0 and 255.

This filter is applied slice by slice in 2D.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.erode_box_slice_by_slice(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_erodeBoxSliceBySlice

pyclesperanto_prototype.erode_connected_labels(labels_input: Union[ndarray, OCLArray, Image, _OCLImage], labels_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Erodes labels to a smaller size. Note: Depending on the label image and the radius, labels may disappear and labels may split into multiple islands. Thus, overlapping labels of input and output may not have the same identifier.

Parameters
  • labels_input (Image) – label image to erode

  • labels_destination (Image, optional) – result

  • radius (int, optional) –

Return type

labels_destination

pyclesperanto_prototype.erode_labels(labels_input: Union[ndarray, OCLArray, Image, _OCLImage], labels_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius: int = 1, relabel_islands: bool = False) Union[ndarray, OCLArray, Image, _OCLImage]

Erodes labels to a smaller size. Note: Depending on the label image and the radius, labels may disappear and labels may split into multiple islands. Thus, overlapping labels of input and output may not have the same identifier.

Notes

  • This operation assumes input images are isotropic.

Parameters
  • labels_input (Image) – label image to erode

  • labels_destination (Image, optional) – result

  • radius (int, optional) –

  • relabel_islands (Boolean, optional) – True: Make sure that the resulting label image has connected components labeled individually and all label indices exist.

Return type

labels_destination

See also

pyclesperanto_prototype.erode_sphere(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes a binary image with pixel values 0 and 1 containing the binary erosion of a given input image.

The erosion takes the von-Neumann-neighborhood (4 pixels in 2D and 6 pixels in 3d) into account. The pixels in the input image with pixel value not equal to 0 will be interpreted as 1.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.erode_sphere(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_erodeSphere

pyclesperanto_prototype.erode_sphere_slice_by_slice(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes a binary image with pixel values 0 and 1 containing the binary erosion of a given input image.

The erosion takes the von-Neumann-neighborhood (4 pixels in 2D and 6 pixels in 3d) into account. The pixels in the input image with pixel value not equal to 0 will be interpreted as 1.

This filter is applied slice by slice in 2D.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.erode_sphere_slice_by_slice(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_erodeSphereSliceBySlice

pyclesperanto_prototype.eroded_otsu_labeling(image: Union[ndarray, OCLArray, Image, _OCLImage], labels_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, number_of_erosions: int = 5, outline_sigma: float = 2) Union[ndarray, OCLArray, Image, _OCLImage]

Segments and labels an image using blurring, Otsu-thresholding, binary erosion and masked Voronoi-labeling.

After bluring and Otsu-thresholding the image, iterative binary erosion is applied. Objects in the eroded image are labeled and the labels are extended to fit again into the initial binary image using masked-Voronoi labeling.

This function is similar to voronoi_otsu_labeling. It is intended to deal better in case labels of objects swapping into each other if objects are dense. Like when using Voronoi-Otsu-labeling, small objects may disappear when applying this operation.

This function is inspired by a similar implementation in Java by Jan Brocher (Biovoxxel) [0] [1]

Parameters
  • image (Image) – intensity image

  • labels_destination (Image, optional) – output label image

  • number_of_erosions (int, optional) – Number of iterations for an erosion. This number must be smaller than the smallest radius of the objects to segment. If the radius is too high, objects may disappear.

  • outline_sigma (float, optional) – Before thresholding, a Gaussian blur is applied using this sigma for smoothing the outline.

Returns

label_image

Return type

Image

pyclesperanto_prototype.euclidean_distance_from_label_centroid_map(labels: Union[ndarray, OCLArray, Image, _OCLImage], centroids_pointlist: Union[ndarray, OCLArray, Image, _OCLImage] = None, distance_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label map, determines the centroids of all labels and writes the distance of all labelled pixels to their centroid in the result image. Background pixels stay zero.

Notes

  • This operation assumes input images are isotropic.

Parameters
  • labels (Image) –

  • distance_map_destination (Image, optional) –

Return type

distance_map_destination

pyclesperanto_prototype.exclude_labels(binary_flaglist: Union[ndarray, OCLArray, Image, _OCLImage], label_map_input: Union[ndarray, OCLArray, Image, _OCLImage], label_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

This operation removes labels from a labelmap and renumbers the remaining labels.

Hand over a binary flag list vector starting with a flag for the background, continuing with label1, label2, …

For example if you pass 0,1,0,0,1: Labels 1 and 4 will be removed (those with a 1 in the vector will be excluded). Labels 2 and 3 will be kept and renumbered to 1 and 2.

Parameters
  • binary_flaglist (Image) –

  • label_map_input (Image) –

  • label_map_destination (Image, optional) –

Return type

label_map_destination

References

1

https://clij.github.io/clij2-docs/reference_excludeLabels

pyclesperanto_prototype.exclude_labels_on_edges(label_map_input: Union[ndarray, OCLArray, Image, _OCLImage], label_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Removes all labels from a label map which touch the edges of the image (in X, Y and Z if the image is 3D).

Remaining label elements are renumbered afterwards.

Parameters
  • label_map_input (Image) –

  • label_map_destination (Image, optional) –

Return type

label_map_destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.exclude_labels_on_edges(label_map_input, label_map_destination)

References

1

https://clij.github.io/clij2-docs/reference_excludeLabelsOnEdges

pyclesperanto_prototype.exclude_labels_out_of_size_range(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, minimum_size: float = 0, maximum_size: float = 100) Union[ndarray, OCLArray, Image, _OCLImage]

Removes labels from a label map which are not within a certain size range.

Size of the labels is given as the number of pixel or voxels per label.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • minimum_size (Number, optional) –

  • maximum_size (Number, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_excludeLabelsOutsideSizeRange

pyclesperanto_prototype.exclude_labels_outside_size_range(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, minimum_size: float = 0, maximum_size: float = 100) Union[ndarray, OCLArray, Image, _OCLImage]

Removes labels from a label map which are not within a certain size range.

Size of the labels is given as the number of pixel or voxels per label.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • minimum_size (Number, optional) –

  • maximum_size (Number, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_excludeLabelsOutsideSizeRange

pyclesperanto_prototype.exclude_labels_with_average_values_out_of_range(values_image: Union[ndarray, OCLArray, Image, _OCLImage], label_map_input: Union[ndarray, OCLArray, Image, _OCLImage], label_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, minimum_value_range: float = 0, maximum_value_range: float = 100) Union[ndarray, OCLArray, Image, _OCLImage]

This operation removes labels from a labelmap and renumbers the remaining labels.

Parameters
  • values_image (Image) –

  • label_map_input (Image) –

  • label_map_destination (Image, optional) –

  • minimum_value_range (Number, optional) –

  • maximum_value_range (Number, optional) –

Return type

label_map_destination

pyclesperanto_prototype.exclude_labels_with_average_values_within_range(values_image: Union[ndarray, OCLArray, Image, _OCLImage], label_map_input: Union[ndarray, OCLArray, Image, _OCLImage], label_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, minimum_value_range: float = 0, maximum_value_range: float = 100) Union[ndarray, OCLArray, Image, _OCLImage]

This operation removes labels from a labelmap and renumbers the remaining labels.

Parameters
  • values_image (Image) –

  • label_map_input (Image) –

  • label_map_destination (Image, optional) –

  • minimum_value_range (Number, optional) –

  • maximum_value_range (Number, optional) –

Return type

label_map_destination

pyclesperanto_prototype.exclude_labels_with_map_values_equal_to_constant(values_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map_input: Union[ndarray, OCLArray, Image, _OCLImage], label_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, constant: float = 0) Union[ndarray, OCLArray, Image, _OCLImage]

This operation removes labels from a labelmap and renumbers the remaining labels.

Notes

  • Values of all pixels in a label each must be identical.

Parameters
  • values_map (Image) –

  • label_map_input (Image) –

  • label_map_destination (Image, optional) –

  • constant (Number, optional) –

Return type

label_map_destination

References

1

https://clij.github.io/clij2-docs/reference_excludeLabelsWithValuesWithinRange

pyclesperanto_prototype.exclude_labels_with_map_values_not_equal_to_constant(values_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map_input: Union[ndarray, OCLArray, Image, _OCLImage], label_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, constant: float = 0) Union[ndarray, OCLArray, Image, _OCLImage]

This operation removes labels from a labelmap and renumbers the remaining labels.

Notes

  • Values of all pixels in a label each must be identical.

Parameters
  • values_map (Image) –

  • label_map_input (Image) –

  • label_map_destination (Image, optional) –

  • constant (Number, optional) –

Return type

label_map_destination

References

1

https://clij.github.io/clij2-docs/reference_excludeLabelsWithValuesWithinRange

pyclesperanto_prototype.exclude_labels_with_map_values_out_of_range(values_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map_input: Union[ndarray, OCLArray, Image, _OCLImage], label_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, minimum_value_range: float = 0, maximum_value_range: float = 100) Union[ndarray, OCLArray, Image, _OCLImage]

This operation removes labels from a labelmap and renumbers the remaining labels.

Notes

  • Values of all pixels in a label each must be identical.

Parameters
  • values_map (Image) –

  • label_map_input (Image) –

  • label_map_destination (Image, optional) –

  • minimum_value_range (Number, optional) –

  • maximum_value_range (Number, optional) –

Return type

label_map_destination

References

1

https://clij.github.io/clij2-docs/reference_excludeLabelsWithValuesWithinRange

pyclesperanto_prototype.exclude_labels_with_map_values_within_range(values_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map_input: Union[ndarray, OCLArray, Image, _OCLImage], label_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, minimum_value_range: float = 0, maximum_value_range: float = 100) Union[ndarray, OCLArray, Image, _OCLImage]

This operation removes labels from a labelmap and renumbers the remaining labels.

Notes

  • Values of all pixels in a label each must be identical.

Parameters
  • values_map (Image) –

  • label_map_input (Image) –

  • label_map_destination (Image, optional) –

  • minimum_value_range (Number, optional) –

  • maximum_value_range (Number, optional) –

Return type

label_map_destination

References

1

https://clij.github.io/clij2-docs/reference_excludeLabelsWithValuesWithinRange

pyclesperanto_prototype.exclude_labels_with_values_equal_to_constant(values_vector: Union[ndarray, OCLArray, Image, _OCLImage], label_map_input: Union[ndarray, OCLArray, Image, _OCLImage], label_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, constant: float = 0) Union[ndarray, OCLArray, Image, _OCLImage]

This operation removes labels from a labelmap and renumbers the remaining labels.

Parameters
  • values_vector (Image) –

  • label_map_input (Image) –

  • label_map_destination (Image, optional) –

  • constant (Number, optional) –

Return type

label_map_destination

References

1

https://clij.github.io/clij2-docs/reference_excludeLabelsWithValuesWithinRange

pyclesperanto_prototype.exclude_labels_with_values_not_equal_to_constant(values_vector: Union[ndarray, OCLArray, Image, _OCLImage], label_map_input: Union[ndarray, OCLArray, Image, _OCLImage], label_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, constant: float = 0) Union[ndarray, OCLArray, Image, _OCLImage]

This operation removes labels from a labelmap and renumbers the remaining labels.

Parameters
  • values_vector (Image) –

  • label_map_input (Image) –

  • label_map_destination (Image, optional) –

  • constant (Number, optional) –

Return type

label_map_destination

References

1

https://clij.github.io/clij2-docs/reference_excludeLabelsWithValuesWithinRange

pyclesperanto_prototype.exclude_labels_with_values_out_of_range(values_vector: Union[ndarray, OCLArray, Image, _OCLImage], label_map_input: Union[ndarray, OCLArray, Image, _OCLImage], label_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, minimum_value_range: float = 0, maximum_value_range: float = 100) Union[ndarray, OCLArray, Image, _OCLImage]

This operation removes labels from a labelmap and renumbers the remaining labels.

Hand over a vector of values and a range specifying which labels with which values are eliminated.

Parameters
  • values_vector (Image) –

  • label_map_input (Image) –

  • label_map_destination (Image, optional) –

  • minimum_value_range (Number, optional) –

  • maximum_value_range (Number, optional) –

Return type

label_map_destination

References

1

https://clij.github.io/clij2-docs/reference_excludeLabelsWithValuesOutOfRange

pyclesperanto_prototype.exclude_labels_with_values_within_range(values_vector: Union[ndarray, OCLArray, Image, _OCLImage], label_map_input: Union[ndarray, OCLArray, Image, _OCLImage], label_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, minimum_value_range: float = 0, maximum_value_range: float = 100) Union[ndarray, OCLArray, Image, _OCLImage]

This operation removes labels from a labelmap and renumbers the remaining labels.

Hand over a vector of values and a range specifying which labels with which values are eliminated.

Parameters
  • values_vector (Image) –

  • label_map_input (Image) –

  • label_map_destination (Image, optional) –

  • minimum_value_range (Number, optional) –

  • maximum_value_range (Number, optional) –

Return type

label_map_destination

References

1

https://clij.github.io/clij2-docs/reference_excludeLabelsWithValuesWithinRange

pyclesperanto_prototype.exclude_large_labels(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, minimum_size: float = 100) Union[ndarray, OCLArray, Image, _OCLImage]

Removes labels from a label map which are above a given maximum size.

Size of the labels is given as the number of pixel or voxels per label.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • minimum_size (Number, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_excludeLabelsOutsideSizeRange

pyclesperanto_prototype.exclude_small_labels(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, maximum_size: float = 100) Union[ndarray, OCLArray, Image, _OCLImage]

Removes labels from a label map which are below a given maximum size.

Size of the labels is given as the number of pixel or voxels per label.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • maximum_size (Number, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_excludeLabelsOutsideSizeRange

pyclesperanto_prototype.exp(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes base exponential of all pixels values.

f(x) = exp(x)

Author(s): Peter Haub, Robert Haase

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.exponential(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_exponential

pyclesperanto_prototype.exponential(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes base exponential of all pixels values.

f(x) = exp(x)

Author(s): Peter Haub, Robert Haase

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.exponential(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_exponential

pyclesperanto_prototype.extend_labeling_via_voronoi(labeling_source: Union[ndarray, OCLArray, Image, _OCLImage], labeling_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label map image and dilates the regions using a octagon shape until they touch.

The resulting label map is written to the output.

Parameters
  • labeling_source (Image) –

  • labeling_destination (Image, optional) –

Return type

labeling_destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.extend_labeling_via_voronoi(input, destination)

References

1

https://clij.github.io/clij2-docs/reference_extendLabelingViaVoronoi

pyclesperanto_prototype.extend_labels_with_maximum_radius(labeling_source: Union[ndarray, OCLArray, Image, _OCLImage], labeling_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius: int = 2) Union[ndarray, OCLArray, Image, _OCLImage]

Dilates labels to a larger size. No label overwrites another label. Similar to the implementation in scikit-image [2] and MorpholibJ[3]

Notes

  • This operation assumes input images are isotropic.

Parameters
  • labels_input (Image) – label image to erode

  • labels_destination (Image, optional, optional) – result

  • radius (int, optional) –

Return type

labels_destination

See also

, ,

pyclesperanto_prototype.extended_depth_of_focus_variance_projection(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius_x: int = 10, radius_y: int = 10, sigma: float = 5) Union[ndarray, OCLArray, Image, _OCLImage]

Extended depth of focus projection maximizing local pixel intensity variance.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • radius_x (int, optional) – radius of a sphere where the variance should be determined

  • radius_y (int, optional) – radius of a sphere where the variance should be determined

  • sigma (float, optional) – The sigma parameter allows controlling a Gaussian blur which smoothes the altitude map.

Return type

destination

pyclesperanto_prototype.extension_ratio_map(labels: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label map, determines for every label the extension ratio and replaces every label with the that number.

The extension ratio is the maximum distance of any pixel in the label to the label centroid divided by the average distance of all pixels in the label to the centroid.

Parameters
  • labels (Image) –

  • destination (Image, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_extensionRatioMap

pyclesperanto_prototype.fabs(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the absolute value of every individual pixel x in a given image.

<pre>f(x) = |x| </pre>

Parameters
  • source (Image) – The input image to be processed.

  • destination (Image, optional) – The output image where results are written into.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.absolute(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_absolute

pyclesperanto_prototype.fill_zeros_inpainting(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Replaces 0 pixels in an image with neighboring intensities (if not 0) iteratively until no 0-value pixels are left. This operation can also be called nearest-neighbor inpainting.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

See also

  • extend_labeling_via_voronoi

pyclesperanto_prototype.flag_existing_intensities(label_src: Union[ndarray, OCLArray, Image, _OCLImage], flag_vector_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Given a label map this function will generate a binary vector where all pixels are set to 1 if label with given x-coordinate in the vector exists. For example a label image such as ` 0 1 3 5 `

will produce a flag_vector like this: ` 1 1 0 1 0 1 `

Parameters
  • label_src (Image) – a label image

  • flag_vector_destination (Image, optional) – binary vector, if given should have size 1*n with n = maximum label + 1

:param : binary vector, if given should have size 1*n with n = maximum label + 1 :type : Image, optional

pyclesperanto_prototype.flag_existing_labels(label_src: Union[ndarray, OCLArray, Image, _OCLImage], flag_vector_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Given a label map this function will generate a binary vector where all pixels are set to 1 if label with given x-coordinate in the vector exists. For example a label image such as ` 0 1 3 5 `

will produce a flag_vector like this: ` 1 1 0 1 0 1 `

Parameters
  • label_src (Image) – a label image

  • flag_vector_destination (Image, optional) – binary vector, if given should have size 1*n with n = maximum label + 1

:param : binary vector, if given should have size 1*n with n = maximum label + 1 :type : Image, optional

pyclesperanto_prototype.flip(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, flip_x: bool = True, flip_y: bool = True, flip_z: bool = True) Union[ndarray, OCLArray, Image, _OCLImage]

Flips an image in X, Y and/or Z direction depending on boolean flags.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • flip_x (Boolean, optional) –

  • flip_y (Boolean, optional) –

  • flip_z (Boolean, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.flip(source, destination, flip_x, flip_y, flip_z)

References

1

https://clij.github.io/clij2-docs/reference_flip3D

pyclesperanto_prototype.gamma_correction(source: Union[ndarray, OCLArray, Image, _OCLImage], target: Union[ndarray, OCLArray, Image, _OCLImage] = None, gamma: float = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Applies a gamma correction to an image.

Therefore, all pixels x of the Image X are normalized and the power to gamma g is computed, before normlization is reversed (^ is the power operator):f(x) = (x / max(X)) ^ gamma * max(X)

Parameters
  • input (Image) –

  • destination (Image, optional) –

  • gamma (Number, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_gammaCorrection

pyclesperanto_prototype.gauss_otsu_labeling(source: Union[ndarray, OCLArray, Image, _OCLImage], label_image_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, outline_sigma: float = 2) Union[ndarray, OCLArray, Image, _OCLImage]

Labels objects directly from grey-value images.

The outline_sigma parameter allows tuning the segmentation result. Under the hood, this filter applies a Gaussian blur, Otsu-thresholding [1] and connected component labeling [2]. The thresholded binary image is flooded using the Voronoi tesselation approach starting from the found local maxima.

Parameters
  • source (Image) – Input grey-value image

  • label_image_destination (Image, optional) – Output image

  • outline_sigma (float, optional) – controls how precise segmented objects are outlined.

Return type

label_image_destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.gauss_otsu_labeling(source, label_image_destination, 2)

References

1

https://ieeexplore.ieee.org/document/4310076

2

https://en.wikipedia.org/wiki/Voronoi_diagram

pyclesperanto_prototype.gaussian_blur(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, sigma_x: float = 0, sigma_y: float = 0, sigma_z: float = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the Gaussian blurred image of an image given sigma values in X, Y and Z.

Thus, the filter kernel can have non-isotropic shape.

The implementation is done separable. In case a sigma equals zero, the direction is not blurred.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • sigma_x (Number, optional) –

  • sigma_y (Number, optional) –

  • sigma_z (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.gaussian_blur(source, destination, sigma_x, sigma_y, sigma_z)

References

1

https://clij.github.io/clij2-docs/reference_gaussianBlur3D

pyclesperanto_prototype.generate_angle_matrix(coordinate_list1: Union[ndarray, OCLArray, Image, _OCLImage], coordinate_list2: Union[ndarray, OCLArray, Image, _OCLImage], angle_matrix_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the angle in radians between all point coordinates given in two point lists.

Takes two images containing pointlists (dimensionality n * d, n: number of points and d: dimensionality) and builds up a matrix containing the angles between these points.

Convention: Values range from -90 to 90 degrees (-0.5 to 0.5 pi radians) * -90 degreess (-0.5 pi radians): Top * 0 defrees (0 radians): Right * 90 degrees (0.5 pi radians): Bottom

Convention: Given two point lists with dimensionality n * d and m * d, the distance matrix will be of size(n + 1) * (m + 1). The first row and column contain zeros. They represent the distance of the objects to a theoretical background object. In that way, distance matrices are of the same size as touch matrices (see generateTouchMatrix). Thus, one can threshold a distance matrix to generate a touch matrix out of it for drawing meshes.

Implemented for 2D only at the moment.

Parameters
  • coordinate_list1 (Image) –

  • coordinate_list2 (Image) –

  • angle_matrix_destination (Image) –

Return type

angle_matrix_destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.generate_distance_matrix(coordinate_list1, coordinate_list2, angle_matrix_destination)

References

pyclesperanto_prototype.generate_binary_overlap_matrix(label_map1: Union[ndarray, OCLArray, Image, _OCLImage], label_map2: Union[ndarray, OCLArray, Image, _OCLImage], binary_overlap_matrix_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes two labelmaps with n and m labels and generates a (n+1)*(m+1) matrix where all pixels are set to 0 exept those where labels overlap between the label maps.

For example, if labels 3 in labelmap1 and 4 in labelmap2 are touching then the pixel (3,4) in the matrix will be set to 1.

Parameters
  • label_map1 (Image) –

  • label_map2 (Image) –

  • binary_overlap_matrix_destination (Image, optional) –

Return type

binary_overlap_matrix_destination

References

1

https://clij.github.io/clij2-docs/reference_generateBinaryOverlapMatrix

pyclesperanto_prototype.generate_distal_neighbors_matrix(distance_matrix: Union[ndarray, OCLArray, Image, _OCLImage], touch_matrix_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, min_distance: float = 0, max_distance: float = 3.4028235e+38)

Produces a touch-matrix where the neighbors within a given distance range are marked as touching neighbors.

Takes a distance matrix (e.g. derived from a pointlist of centroids) and marks for every column the neighbors whose distance lie within a given distance range (>= min and <= max). The resulting matrix can be use as if it was a touch-matrix (a.k.a. adjacency graph matrix).

Parameters
  • distance_matrix (Image) –

  • touch_matrix_destination (Image, optional) –

  • min_distance (float, optional, optional) – default : 0

  • max_distance (float, optional, optional) – default: maximum float value

Return type

touch_matrix_destination

pyclesperanto_prototype.generate_distance_matrix(coordinate_list1: Union[ndarray, OCLArray, Image, _OCLImage], coordinate_list2: Union[ndarray, OCLArray, Image, _OCLImage], distance_matrix_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the distance between all point coordinates given in two point lists.

Takes two images containing pointlists (dimensionality n * d, n: number of points and d: dimensionality) and builds up a matrix containing the distances between these points.

Convention: Given two point lists with dimensionality n * d and m * d, the distance matrix will be of size(n + 1) * (m + 1). The first row and column contain zeros. They represent the distance of the objects to a theoretical background object. In that way, distance matrices are of the same size as touch matrices (see generateTouchMatrix). Thus, one can threshold a distance matrix to generate a touch matrix out of it for drawing meshes.

Parameters
  • coordinate_list1 (Image) –

  • coordinate_list2 (Image) –

  • distance_matrix_destination (Image, optional) –

Return type

distance_matrix_destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.generate_distance_matrix(coordinate_list1, coordinate_list2, distance_matrix_destination)

References

1

https://clij.github.io/clij2-docs/reference_generateDistanceMatrix

pyclesperanto_prototype.generate_n_most_touching_neighbors_matrix(touch_amount_matrix: Union[ndarray, OCLArray, Image, _OCLImage], touch_matrix_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, n: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Generates a touch matrix from a matrix describing how much labels touch by selecting the n neighbors most touching.

touch_amount_matrix: Image

can be either a touch-portion or touch-count

touch_matrix_destination: Image, optional n: int, optional

default: 1

pyclesperanto_prototype.generate_n_nearest_neighbors_matrix(distance_matrix: Union[ndarray, OCLArray, Image, _OCLImage], touch_matrix_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, n: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Produces a touch-matrix where the n nearest neighbors are marked as touching neighbors.

Takes a distance matrix (e.g. derived from a pointlist of centroids) and marks for every column the n smallest distances as neighbors. The resulting matrix can be use as if it was a touch-matrix (a.k.a. adjacency graph matrix).

Inspired by a similar implementation in imglib2 [1]

Note: The implementation is limited to square matrices.

Parameters
  • distance_marix (Image) –

  • touch_matrix_destination (Image, optional) –

  • n (int, optional) – number of neighbors

References

[1] https://github.com/imglib/imglib2/blob/master/src/main/java/net/imglib2/interpolation/neighborsearch/InverseDistanceWeightingInterpolator.java

Return type

touch_matrix_destination

pyclesperanto_prototype.generate_proximal_neighbors_matrix(distance_matrix: Union[ndarray, OCLArray, Image, _OCLImage], touch_matrix_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, min_distance: float = 0, max_distance: float = 3.4028235e+38)

Produces a touch-matrix where the neighbors within a given distance range are marked as touching neighbors.

Takes a distance matrix (e.g. derived from a pointlist of centroids) and marks for every column the neighbors whose distance lie within a given distance range (>= min and <= max). The resulting matrix can be use as if it was a touch-matrix (a.k.a. adjacency graph matrix).

Parameters
  • distance_matrix (Image) –

  • touch_matrix_destination (Image, optional) –

  • min_distance (float, optional, optional) – default : 0

  • max_distance (float, optional, optional) – default: maximum float value

Return type

touch_matrix_destination

pyclesperanto_prototype.generate_touch_count_matrix(label_map: Union[ndarray, OCLArray, Image, _OCLImage], touch_count_matrix_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Take a label image and measure how often labels X and Y touch. Put these numbers in a symmetric touch count matrix.

Parameters
  • label_map (Image) –

  • touch_count_matrix_destination (Image, optional) –

Return type

touch_count_matrix_destination

pyclesperanto_prototype.generate_touch_matrix(label_map: Union[ndarray, OCLArray, Image, _OCLImage], touch_matrix_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a labelmap with n labels and generates a (n+1)*(n+1) matrix where all pixels are set to 0 exept those where labels are touching.

Only half of the matrix is filled (with x < y). For example, if labels 3 and 4 are touching then the pixel (3,4) in the matrix will be set to 1. The touch matrix is a representation of a region adjacency graph

Parameters
  • label_map (Image) –

  • touch_matrix_destination (Image, optional) –

Return type

touch_matrix_destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.generate_touch_matrix(label_map, touch_matrix_destination)

References

1

https://clij.github.io/clij2-docs/reference_generateTouchMatrix

pyclesperanto_prototype.generate_touch_mean_intensity_matrix(intensity_image: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], touch_mean_intensity_matrix_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Take an intensity image and a label image to measure the average intensity along label borders. Results are store to a symmetrical matrix.

Notes

  • This operation assumes input images are isotropic.

  • The intensity_image should be of integer type. In case of float images, information might be lost.

Parameters
  • intensity_image (Image) –

  • label_map (Image) –

  • touch_mean_intensity_matrix_destination (Image, optional) –

Return type

touch_mean_intensity_matrix_destination

pyclesperanto_prototype.generate_touch_mean_intensity_within_range_matrix(image: Union[ndarray, OCLArray, Image, _OCLImage], labels: Union[ndarray, OCLArray, Image, _OCLImage], touch_matrix_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, minimum_intensity: float = 0, maximum_intensity: float = 3.4028235e+38)

Takes an image and a label image and determines whose label touch-borders lie within a given range. This results in a touch matrix.

Notes

  • For technical reasons, only images of integer type are supported. In case images of type float are passed, the results may not be 100% repeatable.

  • The specified range includes minimum and maximum

Parameters
  • image (Image) –

  • labels (Image) –

  • touch_matrix_destination (Image, optional) –

  • minimum_intensity (float, optional) –

  • maximum_intensity (float, optional) –

Return type

touch_matrix_destination

pyclesperanto_prototype.generate_touch_portion_matrix(label_map: Union[ndarray, OCLArray, Image, _OCLImage], touch_portion_matrix_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Take a label image and measure how often labels X and Y touch and divide it by all pixels on the object’s border, excluding the image border. Put these numbers in a symmetric touch count matrix.

Notes

  • This operation assumes input images are isotropic.

  • This matrix is not necessarily symmetric because touch portion depends on the amount of label border pixels (divident). Thus, for each edge between labels A and B, two number exist: one ratio to label A and one ratio to label B.

Parameters
  • label_map (Image) –

  • touch_portion_matrix_destination (Image, optional) –

Return type

touch_count_matrix_destination

pyclesperanto_prototype.generate_touch_portion_within_range_neighbors_matrix(touch_portion_matrix: Union[ndarray, OCLArray, Image, _OCLImage], touch_matrix_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, minimum_touch_portion: float = 0, maximum_touch_portion: float = 1.1) Union[ndarray, OCLArray, Image, _OCLImage]

Generates a touch matrix from a matrix describing how much labels touch by selecting the neighbors whose touch portion lies within a specified range. Minimum and maximum of that specified range are excluded.

Parameters
  • touch_amount_matrix (Image) – can be either a touch-portion or touch-count

  • touch_matrix_destination (Image, optional) –

  • minimum_touch_portion (float, optional) –

  • maximum_touch_portion (float, optional) –

Return type

touch_matrix_destination

pyclesperanto_prototype.get_device() Device

Get the current device GPU class.

pyclesperanto_prototype.gradient_x(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the gradient of gray values along X.

Assuming a, b and c are three adjacent

pixels in X direction. In the target image will be saved as: <pre>b’ =

c - a;</pre>

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.gradient_x(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_gradientX

pyclesperanto_prototype.gradient_y(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the gradient of gray values along Y.

Assuming a, b and c are three adjacent

pixels in Y direction. In the target image will be saved as: <pre>b’ =

c - a;</pre>

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.gradient_y(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_gradientY

pyclesperanto_prototype.gradient_z(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the gradient of gray values along Z.

Assuming a, b and c are three adjacent

pixels in Z direction. In the target image will be saved as: <pre>b’ =

c - a;</pre>

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.gradient_z(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_gradientZ

pyclesperanto_prototype.greater(source1: Union[ndarray, OCLArray, Image, _OCLImage], source2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines if two images A and B greater pixel wise.

f(a, b) = 1 if a > b; 0 otherwise.

Parameters
  • source1 (Image) –

  • source2 (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.greater(source1, source2, destination)

References

1

https://clij.github.io/clij2-docs/reference_greater

pyclesperanto_prototype.greater_constant(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, constant: float = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Determines if two images A and B greater pixel wise.

f(a, b) = 1 if a > b; 0 otherwise.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • constant (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.greater_constant(source, destination, constant)

References

1

https://clij.github.io/clij2-docs/reference_greaterConstant

pyclesperanto_prototype.greater_or_equal(source1: Union[ndarray, OCLArray, Image, _OCLImage], source2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines if two images A and B greater or equal pixel wise.

f(a, b) = 1 if a >= b; 0 otherwise.

Parameters
  • source1 (Image) –

  • source2 (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.greater_or_equal(source1, source2, destination)

References

1

https://clij.github.io/clij2-docs/reference_greaterOrEqual

pyclesperanto_prototype.greater_or_equal_constant(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, constant: float = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Determines if two images A and B greater or equal pixel wise.

f(a, b) = 1 if a >= b; 0 otherwise.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • constant (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.greater_or_equal_constant(source, destination, constant)

References

1

https://clij.github.io/clij2-docs/reference_greaterOrEqualConstant

pyclesperanto_prototype.hessian_eigenvalues(source: Union[ndarray, OCLArray, Image, _OCLImage], small_eigenvalue_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, middle_eigenvalue_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, large_eigenvalue_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the eigenvalues of the hessian matrix of a 2d or 3d image.

Hessian matrix or 2D images:

[Ixx, Ixy] [Ixy, Iyy]

Hessian matrix for 3D images:

[Ixx, Ixy, Ixz] [Ixy, Iyy, Iyz] [Ixz, Iyz, Izz]

Ixx denotes the second derivative in x.

Ixx and Iyy are calculated by convolving the image with the 1d kernel [1 -2 1]. Ixy is calculated by a convolution with the 2d kernel:

[ 0.25 0 -0.25] [ 0 0 0] [-0.25 0 0.25]

Note: This is the only clesperanto function that returns multiple images. This API might be subject to change in the future. Consider using small_hessian_eigenvalue() and/or large_hessian_eigenvalue() instead which return only one image.

Parameters
  • source (Image) –

  • small_eigenvalue_destination (Image, optional) –

  • middle_eigenvalue_destination (Image, optional) –

  • large_eigenvalue_destination (Image, optional) –

Returns

  • small_eigenvalue_destination (Image)

  • middle_eigenvalue_destination (Image)

  • large_eigenvalue_destination (Image)

pyclesperanto_prototype.histogram(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, num_bins: int = 256, minimum_intensity: float = None, maximum_intensity: float = None, determine_min_max: bool = True) Union[ndarray, OCLArray, Image, _OCLImage]

Determines the histogram of a given image.

The histogram image is of dimensions number_of_bins/1/1; a 3D image with height=1 and depth=1. Histogram bins contain the number of pixels with intensity in this corresponding bin. The histogram bins are uniformly distributed between given minimum and maximum grey value intensity. If the flag determine_min_max is set, minimum and maximum intensity will be determined. When calling this operation many times, it is recommended to determine minimum and maximum intensity once at the beginning and handing over these values.

Author(s): Robert Haase adapted work from Aaftab Munshi, Benedict Gaster, Timothy Mattson, James Fung, Dan Ginsburg

License: // adapted code from // https://github.com/bgaster/opencl-book-samples/blob/master/src/Chapter_14/histogram/histogram_image.cl // // It was published unter BSD license according to // https://code.google.com/archive/p/opencl-book-samples/ // // Book: OpenCL(R) Programming Guide // Authors: Aaftab Munshi, Benedict Gaster, Timothy Mattson, James Fung, Dan Ginsburg // ISBN-10: 0-321-74964-2 // ISBN-13: 978-0-321-74964-2 // Publisher: Addison-Wesley Professional // URLs: http://safari.informit.com/9780132488006/ // http://www.openclprogrammingguide.com

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • num_bins (Number, optional) –

  • minimum_intensity (Number, optional) –

  • maximum_intensity (Number, optional) –

  • determine_min_max (Boolean, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.histogram(source, destination, num_bins, minimum_intensity, maximum_intensity, determine_min_max)

References

1

https://clij.github.io/clij2-docs/reference_histogram

pyclesperanto_prototype.imshow(image: Union[ndarray, OCLArray, Image, _OCLImage], title: str = None, labels: bool = False, min_display_intensity: float = None, max_display_intensity: float = None, color_map=None, plot=None, colorbar: bool = False, colormap=None, alpha: float = None, continue_drawing: bool = False)

Visualize an image, e.g. in Jupyter notebooks.

Parameters
  • image (np.ndarray) – numpy or OpenCL-backed image to visualize

  • title (str) – Obsolete (kept for ImageJ-compatibility)

  • labels (bool) – True: integer labels will be visualized with colors False: Specified or default colormap will be used to display intensities.

  • min_display_intensity (float) – lower limit for display range

  • max_display_intensity (float) – upper limit for display range

  • color_map (str) – deprecated, use colormap instead

  • plot (matplotlib axis) – Plot object where the image should be shown. Useful for putting multiple images in subfigures.

  • colorbar (bool) – True puts a colorbar next to the image. Will not work with label images and when visualizing multiple images (continue_drawing=True).

  • colormap (str or matplotlib colormap) –

  • alpha (float) – alpha blending value

  • continue_drawing (float) – True: the next shown image can be visualized on top of the current one, e.g. with alpha = 0.5

pyclesperanto_prototype.invert(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the negative value of all pixels in a given image.

It is recommended to convert images to 32-bit float before applying this operation.

<pre>f(x) = - x</pre>

For binary images, use binaryNot.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.invert(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_invert

pyclesperanto_prototype.is_matrix_symmetric(matrix: Union[ndarray, OCLArray, Image, _OCLImage]) bool

Tests if a matrix is symmetric and returns the result of the test as boolean

pyclesperanto_prototype.jaccard_index(source1: Union[ndarray, OCLArray, Image, _OCLImage], source2: Union[ndarray, OCLArray, Image, _OCLImage])

Determines the overlap of two binary images using the Jaccard index.

A value of 0 suggests no overlap, 1 means perfect overlap. The resulting Jaccard index is saved to the results table in the ‘Jaccard_Index’ column. Note that the Sorensen-Dice coefficient can be calculated from the Jaccard index j using this formula: <pre>s = f(j) = 2 j / (j + 1)</pre>

Parameters
  • source1 (Image) –

  • source2 (Image) –

Return type

float (between 0 and 1)

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.jaccard_index(source1, source2)

References

1

https://clij.github.io/clij2-docs/reference_jaccardIndex

pyclesperanto_prototype.label(binary_input: ~typing.Union[~numpy.ndarray, ~pyclesperanto_prototype._tier0._pycl.OCLArray, ~pyopencl._cl.Image, ~pyclesperanto_prototype._tier0._pycl._OCLImage], labeling_destination: ~typing.Union[~numpy.ndarray, ~pyclesperanto_prototype._tier0._pycl.OCLArray, ~pyopencl._cl.Image, ~pyclesperanto_prototype._tier0._pycl._OCLImage] = None, flagged_nonzero_minimum_filter: callable = <function nonzero_minimum_box>) Union[ndarray, OCLArray, Image, _OCLImage]

Performs connected components analysis inspecting the box neighborhood of every pixel to a binary image and generates a label map.

Parameters
  • binary_input (Image) –

  • labeling_destination (Image, optional) –

Return type

labeling_destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.connected_components_labeling_box(binary_input, labeling_destination)

References

1

https://clij.github.io/clij2-docs/reference_connectedComponentsLabelingBox

pyclesperanto_prototype.label_centroids_to_pointlist(labels: Union[ndarray, OCLArray, Image, _OCLImage], pointlist_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, include_background: bool = False) Union[ndarray, OCLArray, Image, _OCLImage]

Determines the centroids of all labels in a label image or image stack.

It writes the resulting coordinates in a pointlist image. Depending on the dimensionality d of the labelmap and the number of labels n, the pointlist image will have n*d pixels.

Parameters
  • labels (Image) – input label image

  • pointlist_destination (Image, optional) – target image of size d*n for a d-dimensional label image with n labels. In case the background should be determined as well, this image needs to be one pixel wider

  • include_background (bool, optional) – measure the centroid of the background as well

Return type

pointlist_destination

References

1

https://clij.github.io/clij2-docs/reference_centroidsOfLabels

pyclesperanto_prototype.label_maximum_extension_map(labels: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label map, determines for every label the maximum distance of any pixel to the centroid and replaces every label with the that number.

Parameters
  • labels (Image) –

  • destination (Image, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_maximumExtensionMap

pyclesperanto_prototype.label_maximum_extension_ratio_map(labels: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label map, determines for every label the extension ratio and replaces every label with the that number.

The extension ratio is the maximum distance of any pixel in the label to the label centroid divided by the average distance of all pixels in the label to the centroid.

Parameters
  • labels (Image) –

  • destination (Image, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_extensionRatioMap

pyclesperanto_prototype.label_maximum_intensity_map(intensity_image: Union[ndarray, OCLArray, Image, _OCLImage], labels: Union[ndarray, OCLArray, Image, _OCLImage], maximum_intensity_map: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes an image and a corresponding label map, determines the maximum intensity per label and replaces every label with the that number.

This results in a parametric image expressing maximum object intensity.

Parameters
  • intensity_image (Image) –

  • labels (Image) –

  • mean_intensity_map (Image, optional) –

Return type

maximum_intensity_map

References

1

https://clij.github.io/clij2-docs/reference_maximumIntensityMap

pyclesperanto_prototype.label_mean_extension_map(labels: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label map, determines for every label the mean distance of any pixel to the centroid and replaces every label with the that number.

Parameters
  • labels (Image) –

  • destination (Image, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_meanExtensionMap

pyclesperanto_prototype.label_mean_intensity_map(source: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes an image and a corresponding label map, determines the mean intensity per label and replaces every label with the that number.

This results in a parametric image expressing mean object intensity.

Parameters
  • source (Image) –

  • label_map (Image) –

  • destination (Image, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_meanIntensityMap

pyclesperanto_prototype.label_minimum_intensity_map(intensity_image: Union[ndarray, OCLArray, Image, _OCLImage], labels: Union[ndarray, OCLArray, Image, _OCLImage], minimum_intensity_map: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes an image and a corresponding label map, determines the minimum intensity per label and replaces every label with the that number.

This results in a parametric image expressing minimum object intensity.

Parameters
  • intensity_image (Image) –

  • labels (Image) –

  • minimum_intensity_map (Image, optional) –

Return type

minimum_intensity_map

References

1

https://clij.github.io/clij2-docs/reference_minimumIntensityMap

pyclesperanto_prototype.label_nonzero_pixel_count_map(label_map1: Union[ndarray, OCLArray, Image, _OCLImage], label_map2: Union[ndarray, OCLArray, Image, _OCLImage], overlap_count_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes two label maps, and counts for every label in label map 1 how many pixels are not zero in label map 2.

The resulting map is generated from the label map 1 by replacing the labels with the respective count.

Parameters
  • label_map1 (Image) –

  • label_map2 (Image) –

  • overlap_count_map_destination (Image, optional) –

Return type

overlap_count_map_destination

pyclesperanto_prototype.label_nonzero_pixel_count_ratio_map(label_map1: Union[ndarray, OCLArray, Image, _OCLImage], label_map2: Union[ndarray, OCLArray, Image, _OCLImage], overlap_count_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes two label maps, and counts for every label in label map 1 how many pixels are not zero in label map 2. Afterwards, it computes the ratio of nonzero pixels (0..1).

The resulting map is generated from the label map 1 by replacing the labels with the respective ratio.

Parameters
  • label_map1 (Image) –

  • label_map2 (Image) –

  • overlap_count_map_destination (Image, optional) –

Return type

overlap_count_map_destination

pyclesperanto_prototype.label_overlap_count_map(label_map1: Union[ndarray, OCLArray, Image, _OCLImage], label_map2: Union[ndarray, OCLArray, Image, _OCLImage], overlap_count_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes two label maps, and counts for every label in label map 1 how many labels overlap with it in label map 2.

The resulting map is generated from the label map 1 by replacing the labels with the respective count.

Parameters
  • label_map1 (Image) –

  • label_map2 (Image) –

  • overlap_count_map_destination (Image, optional) –

Return type

overlap_count_map_destination

pyclesperanto_prototype.label_pixel_count_map(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label map, determines the number of pixels per label and replaces every label with the that number.

This results in a parametric image expressing area or volume.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_pixelCountMap

pyclesperanto_prototype.label_spots(input_spots: Union[ndarray, OCLArray, Image, _OCLImage], labelled_spots_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Transforms a binary image with single pixles set to 1 to a labelled spots image.

Transforms a spots image as resulting from maximum/minimum detection in an image of the same size where every spot has a number 1, 2, … n.

Parameters
  • input_spots (Image) –

  • labelled_spots_destination (Image, optional) –

Return type

labelled_spots_destination

References

1

https://clij.github.io/clij2-docs/reference_labelSpots

pyclesperanto_prototype.label_standard_deviation_intensity_map(intensity_image: Union[ndarray, OCLArray, Image, _OCLImage], labels: Union[ndarray, OCLArray, Image, _OCLImage], standard_deviation_intensity_map: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes an image and a corresponding label map, determines the standard deviation of the intensity per label and replaces every label with the that number.

This results in a parametric image expressing standard deviation of object intensity.

Parameters
  • intensity_image (Image) –

  • labels (Image) –

  • standard_deviation_intensity_map (Image, optional) –

Return type

standard_deviation_intensity_map

References

1

https://clij.github.io/clij2-docs/reference_standardDeviationIntensityMap

pyclesperanto_prototype.label_to_mask(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, constant: float = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Determines if an image A and a constant b are equal.

<pre>f(a, b) = 1 if a == b; 0 otherwise.</pre>

Parameters
  • source (Image) – The image where every pixel is compared to the constant.

  • destination (Image, optional) – The resulting binary image where pixels will be 1 only if source1

  • pixel. (and source2 equal in the given) –

  • constant (float, optional) – The constant where every pixel is compared to.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.equal_constant(source, destination, constant)

References

1

https://clij.github.io/clij2-docs/reference_equalConstant

pyclesperanto_prototype.labelled_spots_to_pointlist(input_labelled_spots: Union[ndarray, OCLArray, Image, _OCLImage], destination_pointlist: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Generates a coordinate list of points in a labelled spot image.

Transforms a labelmap of spots (single pixels with values 1, 2, …, n for n spots) as resulting from connected components analysis in an image where every column contains d pixels (with d = dimensionality of the original image) with the coordinates of the maxima/minima.

Parameters
  • input_labelled_spots (Image) –

  • destination_pointlist (Image, optional) –

Return type

destination_pointlist

References

1

https://clij.github.io/clij2-docs/reference_labelledSpotsToPointList

pyclesperanto_prototype.laplace_box(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Applies the Laplace operator (Box neighborhood) to an image.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.laplace_box(input, destination)

References

1

https://clij.github.io/clij2-docs/reference_laplaceBox

pyclesperanto_prototype.laplace_diamond(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Applies the Laplace operator (Diamond neighborhood) to an image.

Parameters
  • input (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.laplace_diamond(input, destination)

References

1

https://clij.github.io/clij2-docs/reference_laplaceDiamond

pyclesperanto_prototype.large_hessian_eigenvalue(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines the Hessian eigenvalues and returns the large eigenvalue image.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

pyclesperanto_prototype.local_cross_correlation(source: Union[ndarray, OCLArray, Image, _OCLImage], kernel: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Compute the cross correlation of an image to a given kernel.

Parameters
  • source (Image) –

  • kernel (Image) –

  • destination (Image, optional) –

Return type

destination

See also

https

//anomaly.io/understand-auto-cross-correlation-normalized-shift/index.html

pyclesperanto_prototype.local_maximum_touching_neighbor_count_map(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label map, determines which labels touch and replaces every label with the number of touching neighboring labels.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_touchingNeighborCountMap

pyclesperanto_prototype.local_mean_touching_neighbor_count_map(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label map, determines which labels touch and replaces every label with the number of touching neighboring labels.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_touchingNeighborCountMap

pyclesperanto_prototype.local_median_touching_neighbor_count_map(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label map, determines which labels touch and replaces every label with the number of touching neighboring labels.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_touchingNeighborCountMap

pyclesperanto_prototype.local_minimum_touching_neighbor_count_map(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label map, determines which labels touch and replaces every label with the number of touching neighboring labels.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_touchingNeighborCountMap

pyclesperanto_prototype.local_standard_deviation_touching_neighbor_count_map(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label map, determines which labels touch and replaces every label with the number of touching neighboring labels.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_touchingNeighborCountMap

pyclesperanto_prototype.local_threshold(source1: Union[ndarray, OCLArray, Image, _OCLImage], source2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines if two images A and B greater pixel wise.

f(a, b) = 1 if a > b; 0 otherwise.

Parameters
  • source1 (Image) –

  • source2 (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.greater(source1, source2, destination)

References

1

https://clij.github.io/clij2-docs/reference_greater

pyclesperanto_prototype.log(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes base e logarithm of all pixels values.

f(x) = log(x)

Author(s): Peter Haub, Robert Haase

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.logarithm(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_logarithm

pyclesperanto_prototype.logarithm(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes base e logarithm of all pixels values.

f(x) = log(x)

Author(s): Peter Haub, Robert Haase

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.logarithm(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_logarithm

pyclesperanto_prototype.logical_and(operand1: Union[ndarray, OCLArray, Image, _OCLImage], operand2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes a binary image (containing pixel values 0 and 1) from two images X and Y by connecting pairs of pixels x and y with the binary AND operator &. All pixel values except 0 in the input images are interpreted as 1.

<pre>f(x, y) = x & y</pre>

Parameters
  • operand1 (Image) – The first binary input image to be processed.

  • operand2 (Image) – The second binary input image to be processed.

  • destination (Image, optional) – The output image where results are written into.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.binary_and(operand1, operand2, destination)

References

1

https://clij.github.io/clij2-docs/reference_binaryAnd

pyclesperanto_prototype.logical_not(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes a binary image (containing pixel values 0 and 1) from an image X by negating its pixel values x using the binary NOT operator !

All pixel values except 0 in the input image are interpreted as 1.

<pre>f(x) = !x</pre>

Parameters
  • source (Image) – The binary input image to be inverted.

  • destination (Image, optional) – The output image where results are written into.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.binary_not(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_binaryNot

pyclesperanto_prototype.logical_or(operand1: Union[ndarray, OCLArray, Image, _OCLImage], operand2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes a binary image (containing pixel values 0 and 1) from two images X and Y by connecting pairs of pixels x and y with the binary OR operator |.

All pixel values except 0 in the input images are interpreted as 1.<pre>f(x, y) = x | y</pre>

Parameters
  • operand1 (Image) – The first binary input image to be processed.

  • operand2 (Image) – The second binary input image to be processed.

  • destination (Image, optional) – The output image where results are written into.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.binary_or(operand1, operand2, destination)

References

1

https://clij.github.io/clij2-docs/reference_binaryOr

pyclesperanto_prototype.logical_xor(operand1: Union[ndarray, OCLArray, Image, _OCLImage], operand2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes a binary image (containing pixel values 0 and 1) from two images X and Y by connecting pairs of pixels x and y with the binary operators AND &, OR | and NOT ! implementing the XOR operator.

All pixel values except 0 in the input images are interpreted as 1.

<pre>f(x, y) = (x & !y) | (!x & y)</pre>

Parameters
  • operand1 (Image) – The first binary input image to be processed.

  • operand2 (Image) – The second binary input image to be processed.

  • destination (Image, optional) – The output image where results are written into.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.binary_xor(operand1, operand2, destination)

References

1

https://clij.github.io/clij2-docs/reference_binaryXOr

pyclesperanto_prototype.map_array(source: Union[ndarray, OCLArray, Image, _OCLImage], new_values_vector: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Replaces integer intensities specified in a vector image.

The vector image must be 3D with size (m, 1, 1) where m corresponds to the maximum intensity in the original image. Assuming the vector image contains values (0, 1, 0, 2) means:

  • All pixels with value 0 (first entry in the vector image) get value 0

  • All pixels with value 1 get value 1

  • All pixels with value 2 get value 0

  • All pixels with value 3 get value 2

Parameters
  • source (Image) –

  • new_values_vector (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.replace_intensities(input, new_values_vector, destination)

References

1

https://clij.github.io/clij2-docs/reference_replaceIntensities

pyclesperanto_prototype.mask(source: Union[ndarray, OCLArray, Image, _OCLImage], mask: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes a masked image by applying a binary mask to an image.

All pixel values x of image X will be copied to the destination image in case pixel value m at the same position in the mask image is not equal to zero.

<pre>f(x,m) = (x if (m != 0); (0 otherwise))</pre>

Parameters
  • source (Image) –

  • mask (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.mask(source, mask, destination)

References

1

https://clij.github.io/clij2-docs/reference_mask

pyclesperanto_prototype.mask_label(source: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, label_index: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Computes a masked image by applying a label mask to an image.

All pixel values x of image X will be copied to the destination image in case pixel value m at the same position in the label_map image has the right index value i.

f(x,m,i) = (x if (m == i); (0 otherwise))

Parameters
  • source (Image) –

  • label_map (Image) –

  • destination (Image, optional) –

  • label_index (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.mask_label(source, label_map, destination, label_index)

References

1

https://clij.github.io/clij2-docs/reference_maskLabel

pyclesperanto_prototype.masked_voronoi_labeling(binary_source: Union[ndarray, OCLArray, Image, _OCLImage], mask_image: Union[ndarray, OCLArray, Image, _OCLImage], labeling_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a binary image, labels connected components and dilates the regions using a octagon shape until they touch. The region growing is limited to a masked area.

The resulting label map is written to the output.

Parameters
  • binary_source (Image) –

  • mask_image (Image) –

  • labeling_destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.masked_voronoi_labeling(input, destination)

References

1

https://clij.github.io/clij2-docs/reference_maskedVoronoiLabeling

pyclesperanto_prototype.maximum(source1: Union[ndarray, OCLArray, Image, _OCLImage], source2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the maximum of a pair of pixel values x, y from two given images X and Y.

<pre>f(x, y) = max(x, y)</pre>

Parameters
  • source1 (Image) –

  • source2 (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.maximum_images(source1, source2, destination)

References

1

https://clij.github.io/clij2-docs/reference_maximumImages

pyclesperanto_prototype.maximum_box(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius_x: float = 1, radius_y: float = 1, radius_z: float = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the local maximum of a pixels cube neighborhood.

The cubes size is specified by its half-width, half-height and half-depth (radius).

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • radius_x (Number, optional) –

  • radius_y (Number, optional) –

  • radius_z (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.maximum_box(source, destination, radius_x, radius_y, radius_z)

References

1

https://clij.github.io/clij2-docs/reference_maximum3DBox

pyclesperanto_prototype.maximum_distance_of_n_closest_points(distance_matrix: Union[ndarray, OCLArray, Image, _OCLImage], distance_vector_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, n: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Determines the n shortest distances for each column in a distance matrix and puts the maximum of these in a vector.

Parameters
  • distance_matrix (Image) –

  • distance_vector_destination (Image, optional) –

  • n (int) –

Return type

distance_vector_destination

pyclesperanto_prototype.maximum_distance_of_n_shortest_distances(distance_matrix: Union[ndarray, OCLArray, Image, _OCLImage], distance_vector_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, n: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Determines the n shortest distances for each column in a distance matrix and puts the maximum of these in a vector.

Parameters
  • distance_matrix (Image) –

  • distance_vector_destination (Image, optional) –

  • n (int) –

Return type

distance_vector_destination

pyclesperanto_prototype.maximum_distance_of_touching_neighbors(distance_matrix: Union[ndarray, OCLArray, Image, _OCLImage], touch_matrix: Union[ndarray, OCLArray, Image, _OCLImage], distancelist_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a touch matrix and a distance matrix to determine the maximum distance of touching neighbors for every object.

Parameters
  • distance_matrix (Image) –

  • touch_matrix (Image) –

  • distancelist_destination (Image, optional) –

Return type

average_distancelist_destination

References

1

https://clij.github.io/clij2-docs/reference_minimumDistanceOfTouchingNeighbors

pyclesperanto_prototype.maximum_extension_map(labels: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label map, determines for every label the maximum distance of any pixel to the centroid and replaces every label with the that number.

Parameters
  • labels (Image) –

  • destination (Image, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_maximumExtensionMap

pyclesperanto_prototype.maximum_image_and_scalar(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, scalar: float = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the maximum of a constant scalar s and each pixel value x in a given image X.

<pre>f(x, s) = max(x, s)</pre>

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • scalar (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.maximum_image_and_scalar(source, destination, scalar)

References

1

https://clij.github.io/clij2-docs/reference_maximumImageAndScalar

pyclesperanto_prototype.maximum_images(source1: Union[ndarray, OCLArray, Image, _OCLImage], source2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the maximum of a pair of pixel values x, y from two given images X and Y.

<pre>f(x, y) = max(x, y)</pre>

Parameters
  • source1 (Image) –

  • source2 (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.maximum_images(source1, source2, destination)

References

1

https://clij.github.io/clij2-docs/reference_maximumImages

pyclesperanto_prototype.maximum_intensity_map(intensity_image: Union[ndarray, OCLArray, Image, _OCLImage], labels: Union[ndarray, OCLArray, Image, _OCLImage], maximum_intensity_map: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes an image and a corresponding label map, determines the maximum intensity per label and replaces every label with the that number.

This results in a parametric image expressing maximum object intensity.

Parameters
  • intensity_image (Image) –

  • labels (Image) –

  • mean_intensity_map (Image, optional) –

Return type

maximum_intensity_map

References

1

https://clij.github.io/clij2-docs/reference_maximumIntensityMap

pyclesperanto_prototype.maximum_of_all_pixels(source: Union[ndarray, OCLArray, Image, _OCLImage]) float

Determines the maximum of all pixels in a given image.

It will be stored in a new row of ImageJs Results table in the column ‘Max’.

Parameters

source (Image) – The image of which the maximum of all pixels or voxels will be determined.

Return type

float

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.maximum_of_all_pixels(source)

References

1

https://clij.github.io/clij2-docs/reference_maximumOfAllPixels

pyclesperanto_prototype.maximum_of_distal_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, min_distance: float = 0, max_distance: float = 3.4028235e+38) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the maximum value of neighboring labels. The distance range of the centroids of the neighborhood can be configured.

Notes

  • Values of all pixels in a label each must be identical.

  • This operation assumes input images are isotropic.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • min_distance (float, optional) – default : 0

  • max_distance (float, optional) – default: maximum float value

Return type

parametric_map_destination

References

1

https://clij.github.io/clij2-docs/reference_maximumOfProximalNeighbors

pyclesperanto_prototype.maximum_of_n_most_touching_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, n: int = 1, ignore_touching_background: bool = True) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the maximum value of most touching neighboring labels. The number of most touching neighbors can be configured.

Notes

  • Values of all pixels in a label each must be identical.

  • This operation assumes input images are isotropic.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • n (int) – number of most touching neighbors

Return type

parametric_map_destination

pyclesperanto_prototype.maximum_of_n_nearest_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, n: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the maximum value of neighboring labels. The distance number of nearest neighbors can be configured.

Notes

  • Values of all pixels in a label each must be identical.

  • This operation assumes input images are isotropic.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • n (int, optional) – number of nearest neighbors

Return type

parametric_map_destination

References

1

https://clij.github.io/clij2-docs/reference_maximumOfNNearestNeighbors

pyclesperanto_prototype.maximum_of_proximal_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, min_distance: float = 0, max_distance: float = 3.4028235e+38) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the maximum value of neighboring labels. The distance range of the centroids of the neighborhood can be configured.

Notes

  • Values of all pixels in a label each must be identical.

  • This operation assumes input images are isotropic.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • min_distance (float, optional) – default : 0

  • max_distance (float, optional) – default: maximum float value

Return type

parametric_map_destination

References

1

https://clij.github.io/clij2-docs/reference_maximumOfProximalNeighbors

pyclesperanto_prototype.maximum_of_touch_portion_within_range_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, minimum_touch_portion: float = 0, maximum_touch_portion: float = 1.1, ignore_touching_background: bool = True) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the maximum value of neighboring labels whose touch portion lies within a specified range. The number of most touching neighbors can be configured. Minimum and maximum of that specified range are excluded.

Notes

  • Values of all pixels in a label each must be identical.

  • This operation assumes input images are isotropic.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • minimum_touch_portion (float, optional) –

  • maximum_touch_portion (float, optional) –

Return type

parametric_map_destination

pyclesperanto_prototype.maximum_of_touching_neighbors(values: Union[ndarray, OCLArray, Image, _OCLImage], touch_matrix: Union[ndarray, OCLArray, Image, _OCLImage], maximum_values_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a touch matrix and a vector of values to determine the maximum value among touching neighbors for every object.

Parameters
  • values (Image) – A vector of values corresponding to the labels of which the maximum

  • determined. (should be) –

  • touch_matrix (Image) – A touch_matrix specifying which labels are taken into account for

  • relationships. (neighborhood) –

  • maximum_values_destination (Image, optional) – A the resulting vector of maximum values in the neighborhood.

Return type

maximum_values_destination

References

1

https://clij.github.io/clij2-docs/reference_maximumOfTouchingNeighbors

pyclesperanto_prototype.maximum_of_touching_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius: int = 1, ignore_touching_background: bool = True) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the maximum value of neighboring labels. The radius of the neighborhood can be configured: * radius 0: Nothing is replaced * radius 1: direct neighbors are taken into account * radius 2: neighbors and neighbors or neighbors are taken into account * radius n: …

Notes

  • Values of all pixels in a label each must be identical.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • radius (int, optional) –

  • ignore_touching_background (bool, optional) –

Return type

parametric_map_destination

References

1

https://clij.github.io/clij2-docs/reference_maximumOfTouchingNeighbors

pyclesperanto_prototype.maximum_sphere(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius_x: float = 1, radius_y: float = 1, radius_z: float = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the local maximum of a pixels spherical neighborhood.

The spheres size is specified by its half-width, half-height and half-depth (radius).

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • radius_x (Number, optional) –

  • radius_y (Number, optional) –

  • radius_z (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.maximum_sphere(source, destination, radius_x, radius_y, radius_z)

References

1

https://clij.github.io/clij2-docs/reference_maximum3DSphere

pyclesperanto_prototype.maximum_x_projection(source: Union[ndarray, OCLArray, Image, _OCLImage], destination_max: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines the maximum intensity projection of an image along X.

Parameters
  • source (Image) –

  • destination_max (Image, optional) –

Return type

destination_max

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.maximum_x_projection(source, destination_max)

References

1

https://clij.github.io/clij2-docs/reference_maximumXProjection

pyclesperanto_prototype.maximum_y_projection(source: Union[ndarray, OCLArray, Image, _OCLImage], destination_max: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines the maximum intensity projection of an image along X.

Parameters
  • source (Image) –

  • destination_max (Image, optional) –

Return type

destination_max

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.maximum_y_projection(source, destination_max)

References

1

https://clij.github.io/clij2-docs/reference_maximumYProjection

pyclesperanto_prototype.maximum_z_projection(source: Union[ndarray, OCLArray, Image, _OCLImage], destination_max: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines the maximum intensity projection of an image along Z.

Parameters
  • source (Image) –

  • destination_max (Image, optional) –

Return type

destination_max

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.maximum_z_projection(source, destination_max)

References

1

https://clij.github.io/clij2-docs/reference_maximumZProjection

pyclesperanto_prototype.mean_box(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius_x: float = 1, radius_y: float = 1, radius_z: float = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the local mean average of a pixels box-shaped neighborhood.

The cubes size is specified by its half-width, half-height and half-depth (radius).

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • radius_x (Number, optional) –

  • radius_y (Number, optional) –

  • radius_z (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.mean_box(source, destination, radius_x, radius_y, radius_z)

References

1

https://clij.github.io/clij2-docs/reference_mean3DBox

pyclesperanto_prototype.mean_extension_map(labels: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label map, determines for every label the mean distance of any pixel to the centroid and replaces every label with the that number.

Parameters
  • labels (Image) –

  • destination (Image, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_meanExtensionMap

pyclesperanto_prototype.mean_intensity_map(source: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes an image and a corresponding label map, determines the mean intensity per label and replaces every label with the that number.

This results in a parametric image expressing mean object intensity.

Parameters
  • source (Image) –

  • label_map (Image) –

  • destination (Image, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_meanIntensityMap

pyclesperanto_prototype.mean_of_all_pixels(source: Union[ndarray, OCLArray, Image, _OCLImage]) float

Determines the mean average of all pixels in a given image.

Parameters

source (Image) – The image of which the mean average of all pixels or voxels will be determined.

Return type

float

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.mean_of_all_pixels(source)

References

1

https://clij.github.io/clij2-docs/reference_meanOfAllPixels

pyclesperanto_prototype.mean_of_distal_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, min_distance: float = 0, max_distance: float = 3.4028235e+38) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the mean value of neighboring labels. The distance range of the centroids of the neighborhood can be configured.

Notes

  • Values of all pixels in a label each must be identical.

  • This operation assumes input images are isotropic.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • min_distance (float, optional) – default : 0

  • max_distance (float, optional) – default: maximum float value

Return type

parametric_map_destination

References

1

https://clij.github.io/clij2-docs/reference_meanOfProximalNeighbors

pyclesperanto_prototype.mean_of_n_most_touching_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, n: int = 1, ignore_touching_background: bool = True) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the mean value of most touching neighboring labels. The number of most touching neighbors can be configured.

Notes

  • Values of all pixels in a label each must be identical.

  • This operation assumes input images are isotropic.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • n (int) – number of most touching neighbors

Return type

parametric_map_destination

pyclesperanto_prototype.mean_of_n_nearest_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, n: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the mean value of neighboring labels. The distance number of nearest neighbors can be configured.

Notes

  • Values of all pixels in a label each must be identical.

  • This operation assumes input images are isotropic.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • n (int, optional) – number of nearest neighbors

Return type

parametric_map_destination

References

1

https://clij.github.io/clij2-docs/reference_meanOfNNearestNeighbors

pyclesperanto_prototype.mean_of_proximal_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, min_distance: float = 0, max_distance: float = 3.4028235e+38) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the mean value of neighboring labels. The distance range of the centroids of the neighborhood can be configured.

Notes

  • Values of all pixels in a label each must be identical.

  • This operation assumes input images are isotropic.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • min_distance (float, optional) – default : 0

  • max_distance (float, optional) – default: maximum float value

Return type

parametric_map_destination

References

1

https://clij.github.io/clij2-docs/reference_meanOfProximalNeighbors

pyclesperanto_prototype.mean_of_touch_portion_within_range_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, minimum_touch_portion: float = 0, maximum_touch_portion: float = 1.1, ignore_touching_background: bool = True) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the mean value of neighboring labels whose touch portion lies within a specified range. The number of most touching neighbors can be configured. Minimum and maximum of that specified range are excluded.

Notes

  • Values of all pixels in a label each must be identical.

  • This operation assumes input images are isotropic.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • minimum_touch_portion (float, optional) –

  • maximum_touch_portion (float, optional) –

Return type

parametric_map_destination

pyclesperanto_prototype.mean_of_touching_neighbors(values: Union[ndarray, OCLArray, Image, _OCLImage], touch_matrix: Union[ndarray, OCLArray, Image, _OCLImage], mean_values_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a touch matrix and a vector of values to determine the mean value among touching neighbors for every object.

Parameters
  • values (Image) – A vector of values corresponding to the labels of which the mean

  • determined. (average should be) –

  • touch_matrix (Image) – A touch_matrix specifying which labels are taken into account for

  • relationships. (neighborhood) –

  • mean_values_destination (Image, optional) – A the resulting vector of mean average values in the neighborhood.

Return type

mean_values_destination

References

1

https://clij.github.io/clij2-docs/reference_meanOfTouchingNeighbors

pyclesperanto_prototype.mean_of_touching_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius: int = 1, ignore_touching_background: bool = True) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the mean value of neighboring labels. The radius of the neighborhood can be configured: * radius 0: Nothing is replaced * radius 1: direct neighbors are averaged * radius 2: neighbors and neighbors or neighbors are averaged * radius n: …

Notes

  • Values of all pixels in a label each must be identical.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • radius (int, optional) –

  • ignore_touching_background (bool, optional) –

Return type

parametric_map_destination

References

1

https://clij.github.io/clij2-docs/reference_meanOfTouchingNeighbors

pyclesperanto_prototype.mean_sphere(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius_x: float = 1, radius_y: float = 1, radius_z: float = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the local mean average of a pixels spherical neighborhood.

The spheres size is specified by its half-width, half-height and half-depth (radius).

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • radius_x (Number, optional) –

  • radius_y (Number, optional) –

  • radius_z (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.mean_sphere(source, destination, radius_x, radius_y, radius_z)

References

1

https://clij.github.io/clij2-docs/reference_mean3DSphere

pyclesperanto_prototype.mean_squared_error(source1: Union[ndarray, OCLArray, Image, _OCLImage], source2: Union[ndarray, OCLArray, Image, _OCLImage]) float

Determines the mean squared error (MSE) between two images.

The MSE will be stored in a new row of ImageJs Results table in the column ‘MSE’.

Parameters
  • source1 (Image) –

  • source2 (Image) –

Return type

float

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.mean_squared_error(source1, source2)

References

1

https://clij.github.io/clij2-docs/reference_meanSquaredError

pyclesperanto_prototype.mean_x_projection(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines the mean average intensity projection of an image along X.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.mean_x_projection(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_meanXProjection

pyclesperanto_prototype.mean_y_projection(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines the mean average intensity projection of an image along Y.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.mean_y_projection(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_meanYProjection

pyclesperanto_prototype.mean_z_projection(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines the mean average intensity projection of an image along Z.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.mean_z_projection(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_meanZProjection

pyclesperanto_prototype.median_box(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius_x: int = 1, radius_y: int = 1, radius_z: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the local median of a pixels box shaped neighborhood.

The box is specified by its half-width and half-height (radius). For technical reasons, the area of the box must have less than 1000 pixels.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • radius_x (Number, optional) –

  • radius_y (Number, optional) –

  • radius_z (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.median_box(source, destination, radius_x, radius_y, radius_z)

References

1

https://clij.github.io/clij2-docs/reference_median3DBox

pyclesperanto_prototype.median_of_touching_neighbors(values: Union[ndarray, OCLArray, Image, _OCLImage], touch_matrix: Union[ndarray, OCLArray, Image, _OCLImage], median_values_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a touch matrix and a vector of values to determine the median value among touching neighbors for every object.

Parameters
  • values (Image) –

  • touch_matrix (Image) –

  • median_values_destination (Image, optional) –

Return type

median_values_destination

References

1

https://clij.github.io/clij2-docs/reference_medianOfTouchingNeighbors

pyclesperanto_prototype.median_sphere(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius_x: int = 1, radius_y: int = 1, radius_z: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the local median of a pixels sphere shaped neighborhood.

The sphere is specified by its half-width and half-height (radius). For technical reasons, the area of the box must have less than 1000 pixels.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • radius_x (Number, optional) –

  • radius_y (Number, optional) –

  • radius_z (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.median_box(source, destination, radius_x, radius_y, radius_z)

References

1

https://clij.github.io/clij2-docs/reference_median3DSphere

pyclesperanto_prototype.merge_labels_according_to_touch_matrix(labels: Union[ndarray, OCLArray, Image, _OCLImage], touch_matrix: Union[ndarray, OCLArray, Image, _OCLImage], labels_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Merge labels in a label image as specified by a binary touch matrix.

Parameters
  • labels (Image) –

  • touch_matrix (Image) –

  • labels_destination (Image, optional) –

Return type

labels_destination

pyclesperanto_prototype.merge_labels_with_border_intensity_within_range(image: Union[ndarray, OCLArray, Image, _OCLImage], labels: Union[ndarray, OCLArray, Image, _OCLImage], labels_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, minimum_intensity: float = 0, maximum_intensity: float = 3.4028235e+38)

Takes an image and a label image to determine the mean intensity along borders between labels. Afterwards, it merges labels whose border intensity is within a specified range.

Notes

  • For technical reasons, only images of integer type are supported. In case images of type float are passed, the results may not be 100% repeatable.

  • The specified range includes minimum and maximum

Parameters
  • image (Image) –

  • labels (Image) –

  • labels_destination (Image, optional) –

  • minimum_intensity (float, optional) –

  • maximum_intensity (float, optional) –

Return type

labels_destination

pyclesperanto_prototype.merge_touching_labels(labels_input: Union[ndarray, OCLArray, Image, _OCLImage], labels_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image, determines which labels are touching, merges them, renumbers them and produces a new label image.

Parameters
  • labels_input (Image) –

  • labels_destination (Image, optional) –

Returns

labels_destination

Return type

Image

See also

pyclesperanto_prototype.minimum(source1: Union[ndarray, OCLArray, Image, _OCLImage], source2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the minimum of a pair of pixel values x, y from two given images X and Y.

<pre>f(x, y) = min(x, y)</pre>

Parameters
  • source1 (Image) –

  • source2 (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.minimum_images(source1, source2, destination)

References

1

https://clij.github.io/clij2-docs/reference_minimumImages

pyclesperanto_prototype.minimum_box(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius_x: float = 0, radius_y: float = 0, radius_z: float = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the local minimum of a pixels cube neighborhood.

The cubes size is specified by its half-width, half-height and half-depth (radius).

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • radius_x (Number, optional) –

  • radius_y (Number, optional) –

  • radius_z (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.minimum_box(source, destination, radius_x, radius_y, radius_z)

References

1

https://clij.github.io/clij2-docs/reference_minimum3DBox

pyclesperanto_prototype.minimum_distance_of_touching_neighbors(distance_matrix: Union[ndarray, OCLArray, Image, _OCLImage], touch_matrix: Union[ndarray, OCLArray, Image, _OCLImage], distancelist_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a touch matrix and a distance matrix to determine the minimum distance of touching neighbors for every object.

Parameters
  • distance_matrix (Image) –

  • touch_matrix (Image) –

  • distancelist_destination (Image, optional) –

Return type

average_distancelist_destination

References

1

https://clij.github.io/clij2-docs/reference_minimumDistanceOfTouchingNeighbors

pyclesperanto_prototype.minimum_image_and_scalar(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, scalar: float = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the minimum of a constant scalar s and each pixel value x in a given image X.

<pre>f(x, s) = min(x, s)</pre>

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • scalar (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.minimum_image_and_scalar(source, destination, scalar)

References

1

https://clij.github.io/clij2-docs/reference_minimumImageAndScalar

pyclesperanto_prototype.minimum_images(source1: Union[ndarray, OCLArray, Image, _OCLImage], source2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the minimum of a pair of pixel values x, y from two given images X and Y.

<pre>f(x, y) = min(x, y)</pre>

Parameters
  • source1 (Image) –

  • source2 (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.minimum_images(source1, source2, destination)

References

1

https://clij.github.io/clij2-docs/reference_minimumImages

pyclesperanto_prototype.minimum_intensity_map(intensity_image: Union[ndarray, OCLArray, Image, _OCLImage], labels: Union[ndarray, OCLArray, Image, _OCLImage], minimum_intensity_map: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes an image and a corresponding label map, determines the minimum intensity per label and replaces every label with the that number.

This results in a parametric image expressing minimum object intensity.

Parameters
  • intensity_image (Image) –

  • labels (Image) –

  • minimum_intensity_map (Image, optional) –

Return type

minimum_intensity_map

References

1

https://clij.github.io/clij2-docs/reference_minimumIntensityMap

pyclesperanto_prototype.minimum_of_all_pixels(source: Union[ndarray, OCLArray, Image, _OCLImage]) float

Determines the minimum of all pixels in a given image.

It will be stored in a new row of ImageJs Results table in the column ‘Min’.

Parameters

source (Image) – The image of which the minimum of all pixels or voxels will be determined.

Return type

float

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.minimum_of_all_pixels(source)

References

1

https://clij.github.io/clij2-docs/reference_minimumOfAllPixels

pyclesperanto_prototype.minimum_of_distal_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, min_distance: float = 0, max_distance: float = 3.4028235e+38) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the minimum value of neighboring labels. The distance range of the centroids of the neighborhood can be configured.

Notes

  • Values of all pixels in a label each must be identical.

  • This operation assumes input images are isotropic.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • min_distance (float, optional) – default : 0

  • max_distance (float, optional) – default: maximum float value

Return type

parametric_map_destination

References

1

https://clij.github.io/clij2-docs/reference_minimumOfProximalNeighbors

pyclesperanto_prototype.minimum_of_masked_pixels(source: Union[ndarray, OCLArray, Image, _OCLImage], mask: Union[ndarray, OCLArray, Image, _OCLImage])

Determines the minimum intensity in a masked image.

But only in pixels which have non-zero values in another mask image.

Parameters
  • source (Image) –

  • mask (Image) –

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.minimum_of_masked_pixels(source, mask)

References

1

https://clij.github.io/clij2-docs/reference_minimumOfMaskedPixels

pyclesperanto_prototype.minimum_of_n_most_touching_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, n: int = 1, ignore_touching_background: bool = True) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the minimum value of most touching neighboring labels. The number of most touching neighbors can be configured.

Notes

  • Values of all pixels in a label each must be identical.

  • This operation assumes input images are isotropic.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • n (int) – number of most touching neighbors

Return type

parametric_map_destination

pyclesperanto_prototype.minimum_of_n_nearest_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, n: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the minimum value of neighboring labels. The distance number of nearest neighbors can be configured.

Notes

  • Values of all pixels in a label each must be identical.

  • This operation assumes input images are isotropic.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • n (int, optional) – number of nearest neighbors

Return type

parametric_map_destination

References

1

https://clij.github.io/clij2-docs/reference_minimumOfNNearestNeighbors

pyclesperanto_prototype.minimum_of_proximal_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, min_distance: float = 0, max_distance: float = 3.4028235e+38) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the minimum value of neighboring labels. The distance range of the centroids of the neighborhood can be configured.

Notes

  • Values of all pixels in a label each must be identical.

  • This operation assumes input images are isotropic.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • min_distance (float, optional) – default : 0

  • max_distance (float, optional) – default: maximum float value

Return type

parametric_map_destination

References

1

https://clij.github.io/clij2-docs/reference_minimumOfProximalNeighbors

pyclesperanto_prototype.minimum_of_touch_portion_within_range_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, minimum_touch_portion: float = 0, maximum_touch_portion: float = 1.1, ignore_touching_background: bool = True) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the minimum value of neighboring labels whose touch portion lies within a specified range. The number of most touching neighbors can be configured. Minimum and maximum of that specified range are excluded.

Notes

  • Values of all pixels in a label each must be identical.

  • This operation assumes input images are isotropic.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • minimum_touch_portion (float, optional) –

  • maximum_touch_portion (float, optional) –

Return type

parametric_map_destination

pyclesperanto_prototype.minimum_of_touching_neighbors(values: Union[ndarray, OCLArray, Image, _OCLImage], touch_matrix: Union[ndarray, OCLArray, Image, _OCLImage], minimum_values_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a touch matrix and a vector of values to determine the minimum value among touching neighbors for every object.

Parameters
  • values (Image) – A vector of values corresponding to the labels of which the minimum

  • determined. (should be) –

  • touch_matrix (Image) – A touch_matrix specifying which labels are taken into account for

  • relationships. (neighborhood) –

  • minimum_values_destination (Image, optional) – A the resulting vector of minimum values in the neighborhood.

Return type

minimum_values_destination

References

1

https://clij.github.io/clij2-docs/reference_minimumOfTouchingNeighbors

pyclesperanto_prototype.minimum_of_touching_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius: int = 1, ignore_touching_background: bool = True) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the minimum value of neighboring labels. The radius of the neighborhood can be configured: * radius 0: Nothing is replaced * radius 1: direct neighbors are taken into account * radius 2: neighbors and neighbors or neighbors are taken into account * radius n: …

Notes

  • Values of all pixels in a label each must be identical.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • radius (int, optional) –

  • ignore_touching_background (bool, optional) –

Return type

parametric_map_destination

References

1

https://clij.github.io/clij2-docs/reference_minimumOfTouchingNeighbors

pyclesperanto_prototype.minimum_sphere(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius_x: float = 1, radius_y: float = 1, radius_z: float = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the local minimum of a pixels spherical neighborhood.

The spheres size is specified by its half-width, half-height and half-depth (radius).

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • radius_x (Number, optional) –

  • radius_y (Number, optional) –

  • radius_z (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.minimum_sphere(source, destination, radius_x, radius_y, radius_z)

References

1

https://clij.github.io/clij2-docs/reference_minimum3DSphere

pyclesperanto_prototype.minimum_x_projection(source: Union[ndarray, OCLArray, Image, _OCLImage], destination_min: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines the minimum intensity projection of an image along Y.

Parameters
  • source (Image) –

  • destination_min (Image, optional) –

Return type

destination_min

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.minimum_x_projection(source, destination_min)

References

1

https://clij.github.io/clij2-docs/reference_minimumXProjection

pyclesperanto_prototype.minimum_y_projection(source: Union[ndarray, OCLArray, Image, _OCLImage], destination_min: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines the minimum intensity projection of an image along Y.

Parameters
  • source (Image) –

  • destination_min (Image, optional) –

Return type

destination_min

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.minimum_y_projection(source, destination_min)

References

1

https://clij.github.io/clij2-docs/reference_minimumYProjection

pyclesperanto_prototype.minimum_z_projection(source: Union[ndarray, OCLArray, Image, _OCLImage], destination_min: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines the minimum intensity projection of an image along Z.

Parameters
  • source (Image) –

  • destination_min (Image, optional) –

Return type

destination_min

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.minimum_z_projection(source, destination_min)

References

1

https://clij.github.io/clij2-docs/reference_minimumZProjection

pyclesperanto_prototype.mod(image1: Union[ndarray, OCLArray, Image, _OCLImage], image2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the remainder of a division of pairwise pixel values in two images

Parameters
  • image1 (Image) –

  • image2 (Image) –

  • destination (Image, optional) –

Return type

destination

pyclesperanto_prototype.mode_of_distal_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, min_distance: float = 0, max_distance: float = 3.4028235e+38) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the mode value of neighboring labels. The distance range of the centroids of the neighborhood can be configured.

Notes

  • Values of all pixels in a label each must be identical.

  • This operation assumes input images are isotropic.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • min_distance (float, optional) – default : 0

  • max_distance (float, optional) – default: maximum float value

Return type

parametric_map_destination

References

1

https://clij.github.io/clij2-docs/reference_modeOfProximalNeighbors

pyclesperanto_prototype.mode_of_n_most_touching_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, n: int = 1, ignore_touching_background: bool = True) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the most popular value of most touching neighboring labels. The number of most touching neighbors can be configured.

Notes

  • Values of all pixels in a label each must be identical.

  • This operation assumes input images are isotropic.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • n (int) – number of most touching neighbors

Return type

parametric_map_destination

pyclesperanto_prototype.mode_of_n_nearest_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, n: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the mode value of neighboring labels. The distance number of nearest neighbors can be configured.

Notes

  • Values of all pixels in a label each must be identical.

  • This operation assumes input images are isotropic.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • n (int, optional) – number of nearest neighbors

Return type

parametric_map_destination

References

1

https://clij.github.io/clij2-docs/reference_modeOfNNearestNeighbors

pyclesperanto_prototype.mode_of_proximal_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, min_distance: float = 0, max_distance: float = 3.4028235e+38) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the mode value of neighboring labels. The distance range of the centroids of the neighborhood can be configured.

Notes

  • Values of all pixels in a label each must be identical.

  • This operation assumes input images are isotropic.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • min_distance (float, optional) – default : 0

  • max_distance (float, optional) – default: maximum float value

Return type

parametric_map_destination

References

1

https://clij.github.io/clij2-docs/reference_modeOfProximalNeighbors

pyclesperanto_prototype.mode_of_touch_portion_within_range_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, minimum_touch_portion: float = 0, maximum_touch_portion: float = 1.1, ignore_touching_background: bool = True) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the most popular value of neighboring labels whose touch portion lies within a specified range. The number of most touching neighbors can be configured. Minimum and maximum of that specified range are excluded.

Notes

  • Values of all pixels in a label each must be identical.

  • This operation assumes input images are isotropic.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • minimum_touch_portion (float, optional) –

  • maximum_touch_portion (float, optional) –

Return type

parametric_map_destination

pyclesperanto_prototype.mode_of_touching_neighbors(src_values: Union[ndarray, OCLArray, Image, _OCLImage], touch_matrix: Union[ndarray, OCLArray, Image, _OCLImage], dst_values: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines the most popular value of labeled neighboring objects for each object.

Parameters
  • src_values (Image) – Vector of values

  • touch_matrix (Image) – Touch matrix describing neighborhood relationships

  • dst_values (Image, optional) – Resulting vector of values

Return type

dst_values

pyclesperanto_prototype.mode_of_touching_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius: int = 1, ignore_touching_background: bool = True) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the mode value of neighboring labels. The radius of the neighborhood can be configured: * radius 0: Nothing is replaced * radius 1: direct neighbors are taken into account * radius 2: neighbors and neighbors or neighbors are taken into account * radius n: …

Notes

  • Values of all pixels in a label each must be identical.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • radius (int, optional) –

  • ignore_touching_background (bool, optional) –

Return type

parametric_map_destination

References

1

https://clij.github.io/clij2-docs/reference_modeOfTouchingNeighbors

pyclesperanto_prototype.modulo_images(image1: Union[ndarray, OCLArray, Image, _OCLImage], image2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the remainder of a division of pairwise pixel values in two images

Parameters
  • image1 (Image) –

  • image2 (Image) –

  • destination (Image, optional) –

Return type

destination

pyclesperanto_prototype.multiply_image_and_coordinate(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, dimension=0) Union[ndarray, OCLArray, Image, _OCLImage]

Multiplies all pixel intensities with the x, y or z coordinate, depending on specified dimension.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • dimension (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.multiply_image_and_coordinate(source, destination, dimension)

References

1

https://clij.github.io/clij2-docs/reference_multiplyImageAndCoordinate

pyclesperanto_prototype.multiply_image_and_scalar(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, scalar: float = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Multiplies all pixels value x in a given image X with a constant scalar s.

<pre>f(x, s) = x * s</pre>

Parameters
  • source (Image) – The input image to be multiplied with a constant.

  • destination (Image, optional) – The output image where results are written into.

  • scalar (float, optional) – The number with which every pixel will be multiplied with.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.multiply_image_and_scalar(source, destination, scalar)

References

1

https://clij.github.io/clij2-docs/reference_multiplyImageAndScalar

pyclesperanto_prototype.multiply_images(factor1: Union[ndarray, OCLArray, Image, _OCLImage], factor2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Multiplies all pairs of pixel values x and y from two image X and Y.

<pre>f(x, y) = x * y</pre>

Parameters
  • factor1 (Image) – The first input image to be multiplied.

  • factor2 (Image) – The second image to be multiplied.

  • destination (Image, optional) – The output image where results are written into.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.multiply_images(factor1, factor2, destination)

References

1

https://clij.github.io/clij2-docs/reference_multiplyImages

pyclesperanto_prototype.multiply_matrix(matrix1: Union[ndarray, OCLArray, Image, _OCLImage], matrix2: Union[ndarray, OCLArray, Image, _OCLImage], matrix_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Multiplies two matrices with each other.

Shape of matrix1 should be equal to shape of matrix2 transposed.

Parameters
  • matrix1 (Image) –

  • matrix2 (Image) –

  • matrix_destination (Image, optional) –

Return type

matrix_destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.multiply_matrix(matrix1, matrix2, matrix_destination)

References

1

https://clij.github.io/clij2-docs/reference_multiplyMatrix

pyclesperanto_prototype.n_closest_points(distance_matrix: Union[ndarray, OCLArray, Image, _OCLImage], indexlist_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, n: int = 1, ignore_background: bool = True, ignore_self: bool = True) Union[ndarray, OCLArray, Image, _OCLImage]

Determine the n point indices with shortest distance for all points in a distance matrix.

This corresponds to the n row indices with minimum values for each column of the distance matrix.

Parameters
  • distance_matrix (Image) –

  • indexlist_destination (Image, optional) –

  • n (Number, optional) –

  • ignore_background (bool, optional) – The first column and row of the distance matrix will be ignored because they represent the background object.

  • ignore_self (bool, optional) – The x==y diagonal will be ignored because it represents the distance of the object to itself.

Return type

indexlist_destination

References

1

https://clij.github.io/clij2-docs/reference_nClosestPoints

pyclesperanto_prototype.n_nearest_labels_to_igraph(label_image: Union[ndarray, OCLArray, Image, _OCLImage], n: int = 1)

Takes a label image, determines which n labels are the nearest to each label returns an igraph graph representing labels in range.

Parameters
  • label_image (Image) –

  • n (int, optional) – number of nearest labels

Return type

igraph Graph

pyclesperanto_prototype.n_nearest_labels_to_networkx(label_image: Union[ndarray, OCLArray, Image, _OCLImage], n: int = 1)

Takes a label image, determines which n labels are the nearest to each label returns an networkx graph representing labels in range.

Parameters
  • label_image (Image) –

  • n (int, optional) – number of nearest labels

Return type

networkx Graph

pyclesperanto_prototype.nan_to_num(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, nan: float = 0, posinf: float = 1.7976931348623157e+308, neginf: float = - 1.7976931348623157e+308) Union[ndarray, OCLArray, Image, _OCLImage]

Copies all pixels instead those which are not a number (NaN), or positive/negative infinity which are replaced by a defined new value, default 0.

This function aims to work similarly as its counterpart in numpy [1]. Default values for posinf and neginf may differ from numpy and even differ depending on compute hardware. It is recommended to specify those values.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • nan (float, optional) – default 0

  • posinf (float, optional) – default: a very large number

  • neginf (float, optional) – default a very small number

Return type

destination

See also

pyclesperanto_prototype.neighbors_of_neighbors(touch_matrix: Union[ndarray, OCLArray, Image, _OCLImage], neighbor_matrix_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines neighbors of neigbors from touch matrix and saves the result as a new touch matrix.

Parameters
  • touch_matrix (Image) –

  • neighbor_matrix_destination (Image, optional) –

Return type

neighbor_matrix_destination

References

1

https://clij.github.io/clij2-docs/reference_neighborsOfNeighbors

pyclesperanto_prototype.nonzero_maximum_box(source: Union[ndarray, OCLArray, Image, _OCLImage], flag_dst: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Apply a maximum filter (box shape) to the input image.

The radius is fixed to 1 and pixels with value 0 are ignored. Note: Pixels with 0 value in the input image will not be overwritten in the output image. Thus, the result image should be initialized by copying the original image in advance.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.nonzero_maximum_box(input, destination)

References

1

https://clij.github.io/clij2-docs/reference_nonzeroMaximumBox

pyclesperanto_prototype.nonzero_maximum_diamond(source: Union[ndarray, OCLArray, Image, _OCLImage], flag_dst: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Apply a maximum filter (diamond shape) to the input image.

The radius is fixed to 1 and pixels with value 0 are ignored. Note: Pixels with 0 value in the input image will not be overwritten in the output image. Thus, the result image should be initialized by copying the original image in advance.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.nonzero_maximum_diamond(input, destination)

References

1

https://clij.github.io/clij2-docs/reference_nonzeroMaximumDiamond

pyclesperanto_prototype.nonzero_minimum_box(source: Union[ndarray, OCLArray, Image, _OCLImage], flag_dst: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Apply a minimum filter (box shape) to the input image.

The radius is fixed to 1 and pixels with value 0 are ignored. Note: Pixels with 0 value in the input image will not be overwritten in the output image. Thus, the result image should be initialized by copying the original image in advance.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.nonzero_minimum_box(input, destination)

References

1

https://clij.github.io/clij2-docs/reference_nonzeroMinimumBox

pyclesperanto_prototype.nonzero_minimum_diamond(source: Union[ndarray, OCLArray, Image, _OCLImage], flag_dst: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Apply a minimum filter (diamond shape) to the input image.

The radius is fixed to 1 and pixels with value 0 are ignored.Note: Pixels with 0 value in the input image will not be overwritten in the output image. Thus, the result image should be initialized by copying the original image in advance.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.nonzero_minimum_diamond(input, destination)

References

1

https://clij.github.io/clij2-docs/reference_nonzeroMinimumDiamond

pyclesperanto_prototype.not_equal(source1: Union[ndarray, OCLArray, Image, _OCLImage], source2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines if two images A and B equal pixel wise.

f(a, b) = 1 if a != b; 0 otherwise.

Parameters
  • source1 (Image) – The first image to be compared with.

  • source2 (Image) – The second image to be compared with the first.

  • destination (Image, optional) – The resulting binary image where pixels will be 1 only if source1

  • pixel. (and source2 are not equal in the given) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.not_equal(source1, source2, destination)

References

1

https://clij.github.io/clij2-docs/reference_notEqual

pyclesperanto_prototype.not_equal_constant(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, constant: float = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Determines if two images A and B equal pixel wise.

sourceImage

The image where every pixel is compared to the constant.

destinationImage, optional

The resulting binary image where pixels will be 1 only if source1

and source2 equal in the given pixel. constant : float, optional

The constant where every pixel is compared to.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.not_equal_constant(source, destination, constant)

References

1

https://clij.github.io/clij2-docs/reference_notEqualConstant

pyclesperanto_prototype.nparray(gpu_array)

Returns an image from GPU memory as numpy compatible array

Deprecated since version 0.6.0: pull behaviour will be changed pyclesperanto_prototype 0.7.0 to do the same as pull_zyx because it’s faster and having both doing different things is confusing.

Parameters

image (OCLArray) –

Return type

numpy array

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.pull(image)

References

1

https://clij.github.io/clij2-docs/reference_pull

pyclesperanto_prototype.onlyzero_overwrite_maximum_box(source: Union[ndarray, OCLArray, Image, _OCLImage], flag_dst: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Apply a local maximum filter to an image which only overwrites pixels with value 0.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.onlyzero_overwrite_maximum_box(input, destination)

References

1

https://clij.github.io/clij2-docs/reference_onlyzeroOverwriteMaximumBox

pyclesperanto_prototype.onlyzero_overwrite_maximum_diamond(source: Union[ndarray, OCLArray, Image, _OCLImage], flag_dst: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Apply a local maximum filter to an image which only overwrites pixels with value 0.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.onlyzero_overwrite_maximum_diamond(input, destination)

References

1

https://clij.github.io/clij2-docs/reference_onlyzeroOverwriteMaximumDiamond

pyclesperanto_prototype.opening_box(input_image: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius_x: int = 0, radius_y: int = 0, radius_z: int = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Opening operator, box-shaped

Applies morphological opening to intensity images using a box-shaped footprint. This operator also works with binary images.

Parameters
  • input_image (Image) –

  • destination (Image, optional) –

  • radius_x (int, optional) –

  • radius_y (int, optional) –

  • radius_z (int, optional) –

Return type

destination

pyclesperanto_prototype.opening_labels(labels_input: Union[ndarray, OCLArray, Image, _OCLImage], labels_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius: int = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Apply a morphological opening operation to a label image.

The operation consists of iterative erosion and dilation of the labels. With every iteration, box and diamond/sphere structuring elements are used and thus, the operation has an octagon as structuring element.

Notes

  • This operation assumes input images are isotropic.

Parameters
  • labels_input (Image) –

  • labels_destination (Image, optional) –

  • radius (int, optional) –

Returns

labels_destination

Return type

Image

pyclesperanto_prototype.opening_sphere(input_image: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius_x: int = 1, radius_y: int = 1, radius_z: int = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Opening operator, sphere-shaped

Applies morphological opening to intensity images using a sphere-shaped footprint. This operator also works with binary images.

Parameters
  • input_image (Image) –

  • destination (Image, optional) –

  • radius_x (int, optional) –

  • radius_y (int, optional) –

  • radius_z (int, optional) –

Returns

destination

Return type

Image

pyclesperanto_prototype.operation(name: str)

Returns a function from the pyclesperanto package

Parameters

name (str) – name of the operation

Return type

function

pyclesperanto_prototype.operations(must_have_categories: Optional[list] = None, must_not_have_categories: Optional[list] = None) dict

Retrieve a dictionary of operations, which can be filtered by annotated categories.

Parameters
  • must_have_categories (list of str, optional) – if provided, the result will be filtered so that operations must contain all given categories.

  • must_not_have_categories (list of str, optional) – if provided, the result will be filtered so that operations must not contain all given categories.

Returns

dict of str

Return type

function

pyclesperanto_prototype.paste(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, destination_x: int = 0, destination_y: int = 0, destination_z: int = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Pastes an image into another image at a given position.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • destination_x (Number, optional) –

  • destination_y (Number, optional) –

  • destination_z (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.paste(source, destination, destination_x, destination_y, destination_z)

References

1

https://clij.github.io/clij2-docs/reference_paste3D

pyclesperanto_prototype.pixel_count_map(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label map, determines the number of pixels per label and replaces every label with the that number.

This results in a parametric image expressing area or volume.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_pixelCountMap

pyclesperanto_prototype.plugin_function(function: ~typing.Callable = '__no__default__', output_creator: ~typing.Callable = <function create_like>, categories: list = None, priority: int = 0) Callable

Function decorator to ensure correct types and values of all parameters.

The given input parameters are either of type OCLArray (which the GPU understands) or are converted to this type (see push function). If output parameters of type OCLArray are not set, an empty image is created and handed over.

Parameters
  • function (callable) – The function to be executed on the GPU.

  • output_creator (callable, optional) – A function to create an output OCLArray given an input OCLArray. By default, we create float32 output images of the same shape as input images.

  • categories (list of str, optional) – A list of category names the function is associated with

  • priority (int, optional) – can be used in lists of multiple operations to differentiate multiple operations that fulfill the same purpose but better/faster/more general.

Returns

worker_function – The actual function call that will be executed, magically creating output arguments of the correct type.

Return type

callable

pyclesperanto_prototype.point_index_list_to_mesh(pointlist: Union[ndarray, OCLArray, Image, _OCLImage], indexlist: Union[ndarray, OCLArray, Image, _OCLImage], mesh_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Meshes all points in a given point list which are indiced in a corresponding index list.

Parameters
  • pointlist (Image) –

  • indexlist (Image) –

  • mesh_destination (Image, optional) –

Return type

mesh_destination

References

1

https://clij.github.io/clij2-docs/reference_pointIndexListToMesh

pyclesperanto_prototype.point_index_list_to_touch_matrix(indexlist: Union[ndarray, OCLArray, Image, _OCLImage], matrix_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a list of point indices to generate a touch matrix (a.k.a. adjacency graph matrix) out of it. The list has a dimensionality of m*n for the points 1… m (0 a.k.a. background is not in this list). In the n rows, there are indices to points which should be connected.

Parameters
  • indexlist (Image) –

  • matrix_destination (Image, optional) –

Return type

matrix_destination

pyclesperanto_prototype.pointlist_to_labelled_spots(pointlist: Union[ndarray, OCLArray, Image, _OCLImage], spots_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a pointlist with dimensions n times d with n point coordinates in d dimensions and labels corresponding pixels.

Parameters
  • pointlist (Image) –

  • spots_destination (Image, optional) –

Return type

spots_destination

References

1

https://clij.github.io/clij2-docs/reference_pointlistToLabelledSpots

pyclesperanto_prototype.power(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, exponent: float = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Computes all pixels value x to the power of a given exponent a.

<pre>f(x, a) = x ^ a</pre>

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • exponent (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.power(source, destination, exponent)

References

1

https://clij.github.io/clij2-docs/reference_power

pyclesperanto_prototype.power_images(source: Union[ndarray, OCLArray, Image, _OCLImage], exponent: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Calculates x to the power of y pixel wise of two images X and Y.

Parameters
  • source (Image) –

  • exponent (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.power_images(input, exponent, destination)

References

1

https://clij.github.io/clij2-docs/reference_powerImages

pyclesperanto_prototype.prefix_in_x(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, scalar: float = 0)

Takes a matrix or vector and adds a scalar in x-direction.

This is often useful, e.g. if you have a vector of measurements and you need a vector of background 0 and behind measurements.

input: 1, 3, 4 output: 0, 1, 3, 4

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • scalar (float, optional) –

Return type

destination

pyclesperanto_prototype.proximal_labels_to_igraph(label_image: Union[ndarray, OCLArray, Image, _OCLImage], minimum_distance: float = 0, maximum_distance: float = 3.4028235e+38)

Takes a label image, determines which labels are in a given distance range and returns an igraph graph representing labels in range.

Parameters
  • label_image (Image) –

  • minimum_distance (float, optional) –

  • maximum_distance (float, optional) –

Return type

igraph Graph

pyclesperanto_prototype.proximal_labels_to_networkx(label_image: Union[ndarray, OCLArray, Image, _OCLImage], minimum_distance: float = 0, maximum_distance: float = 3.4028235e+38)

Takes a label image, determines which labels are in a given distance range and returns an networkx graph representing labels in range.

Parameters
  • label_image (Image) –

  • minimum_distance (float, optional) –

  • maximum_distance (float, optional) –

Return type

networkx Graph

pyclesperanto_prototype.proximal_neighbor_count(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, min_distance: float = 0, max_distance: float = 3.4028235e+38) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label map, determines which labels are within a give distance range and returns the number of those in a vector.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • min_distance (float, optional) – default : 0

  • max_distance (float, optional) – default: maximum float value

Return type

destination

pyclesperanto_prototype.proximal_neighbor_count_map(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, min_distance: float = 0, max_distance: float = 3.4028235e+38) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label map, determines which labels are within a give distance range and replaces every label with the number of neighboring labels.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • min_distance (float, optional) – default : 0

  • max_distance (float, optional) – default: maximum float value

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_proximalNeighborCountMap

pyclesperanto_prototype.proximal_other_labels_count(label_image: Union[ndarray, OCLArray, Image, _OCLImage], other_label_image: Union[ndarray, OCLArray, Image, _OCLImage], count_vector: Union[ndarray, OCLArray, Image, _OCLImage] = None, maximum_distance: float = 25) Union[ndarray, OCLArray, Image, _OCLImage]

Count number of labels within a given radius in an other label image and returns the result as vector.

Notes

  • This operation assumes input images are isotropic.

Parameters
  • label_image (Image) –

  • other_label_image (Image) –

  • count_vector (Image, optional) – vector (num_labels + 1 long) where the values will be written in. The first column (index 0, value 0) corresponds to background.

  • maximum_distance (Number, optional) – maximum distance in pixels

Return type

count_vector

pyclesperanto_prototype.proximal_other_labels_count_map(label_image: Union[ndarray, OCLArray, Image, _OCLImage], other_label_image: Union[ndarray, OCLArray, Image, _OCLImage], count_map: Union[ndarray, OCLArray, Image, _OCLImage] = None, maximum_distance: float = 25) Union[ndarray, OCLArray, Image, _OCLImage]

Count number of labels within a given radius in an other label image and returns the result as parametric map.

Parameters
  • label_image (Image) –

  • other_label_image (Image) –

  • count_map (Image, optional) – parametric image where the values will be written in.

  • maximum_distance (Number, optional) – maximum distance in pixels

Return type

count_map

pyclesperanto_prototype.pull(gpu_array)

Returns an image from GPU memory as numpy compatible array

Deprecated since version 0.6.0: pull behaviour will be changed pyclesperanto_prototype 0.7.0 to do the same as pull_zyx because it’s faster and having both doing different things is confusing.

Parameters

image (OCLArray) –

Return type

numpy array

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.pull(image)

References

1

https://clij.github.io/clij2-docs/reference_pull

pyclesperanto_prototype.push(any_array)

Copies an image to GPU memory and returns its handle

Deprecated since version 0.6.0: push behaviour will be changed pyclesperanto_prototype 0.7.0 to do the same as push_zyx because it’s faster and having both doing different things is confusing.

Parameters

image (numpy array) –

Return type

object of type backend.array_type()

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.push(image)

References

1

https://clij.github.io/clij2-docs/reference_push

pyclesperanto_prototype.push_regionprops(props: Union[dict, RegionProperties], first_row_index: int = 0) Union[ndarray, OCLArray, Image, _OCLImage]

See also

STATISTICS_ENTRY

Parameters

props

pyclesperanto_prototype.radians_to_degrees(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Converts radians to degrees

pyclesperanto_prototype.range(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, start_x: int = None, stop_x: int = None, step_x: int = None, start_y: int = None, stop_y: int = None, step_y: int = None, start_z: int = None, stop_z: int = None, step_z: int = None) Union[ndarray, OCLArray, Image, _OCLImage]

Crops an image according to a defined range and step size

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • start_x (int, optional) –

  • stop_x (int, optional) –

  • step_x (int, optional) –

  • start_y (int, optional) –

  • stop_y (int, optional) –

  • step_y (int, optional) –

  • start_z (int, optional) –

  • stop_z (int, optional) –

  • step_z (int, optional) –

Return type

destination

pyclesperanto_prototype.read_intensities_from_map(labels: Union[ndarray, OCLArray, Image, _OCLImage], map_image: Union[ndarray, OCLArray, Image, _OCLImage], values_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric image to read parametric values from the labels positions. The read intensity values are stored in a new vector.

Note: This will only work if all labels have number of voxels == 1 or if all pixels in each label have the same value.

Parameters
  • labels (Image) –

  • map_image (Image) –

  • values_destination (Image, optional) – 1d vector with length == number of labels + 1

Returns

vector of intensity values with 0th element corresponding to background and subsequent entries corresponding to the intensity in the given labeled object

Return type

values_destination, Image

pyclesperanto_prototype.read_intensities_from_positions(pointlist: Union[ndarray, OCLArray, Image, _OCLImage], intensity_image: Union[ndarray, OCLArray, Image, _OCLImage], values_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Go to positions in a given image specified by a pointlist and read intensities of those pixels. The intensities are stored in a new vector.

Parameters
  • pointlist (Image) –

  • intensity_image (Image) –

  • values_destination (Image, optional) –

Return type

values_destination

pyclesperanto_prototype.reciprocal(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes 1/x for every pixel value

This function is supposed to work similarly to its counter part in numpy [1]

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

References

1

https://numpy.org/doc/stable/reference/generated/numpy.reciprocal.html

pyclesperanto_prototype.reduce_labels_to_centroids(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label map and reduces all labels to their center spots. Label IDs stay and background will be zero.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

See also

pyclesperanto_prototype.reduce_labels_to_label_edges(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label map and reduces all labels to their edges. Label IDs stay and background will be zero.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

See also

pyclesperanto_prototype.reduce_stack(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, reduction_factor: int = 2, offset: int = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Reduces the number of slices in a stack by a given factor. With the offset you have control which slices stay: * With factor 3 and offset 0, slices 0, 3, 6,… are kept. * With factor 4 and offset 1, slices 1, 5, 9,… are kept.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • reduction_factor (Number, optional) –

  • offset (Number, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_reduceStack

pyclesperanto_prototype.regionprops(labelmap: Union[ndarray, OCLArray, Image, _OCLImage], intensity_image: Union[ndarray, OCLArray, Image, _OCLImage] = None, cache: bool = True, extra_properties=[]) Union[ndarray, OCLArray, Image, _OCLImage]

Convert the intensity image and the corresponding label image to numpy arrays (via pull) and calls scikit-image regionprops [1]. Hence, this operation runs on the CPU. A faster, GPU-accelerated function with limited measurements is available as statistics_of_labelled_pixels [2].

Note: the parameter order is different compared to statistics_of_labeled_pixels

Parameters
  • labelmap (Image) –

  • intensity_image (Image) –

  • extra_properties (list) –

Return type

scikit-image regionprops

References

1

https://scikit-image.org/docs/stable/api/skimage.measure.html#skimage.measure.regionprops

2

https://clij.github.io/clij2-docs/reference_statisticsOfLabelledPixels

pyclesperanto_prototype.relabel_sequential(source: Union[ndarray, OCLArray, Image, _OCLImage], output: Union[ndarray, OCLArray, Image, _OCLImage] = None, blocksize: int = 4096) Union[ndarray, OCLArray, Image, _OCLImage]

Analyses a label map and if there are gaps in the indexing (e.g. label 5 is not present) all subsequent labels will be relabelled.

Thus, afterwards number of labels and maximum label index are equal. This operation is mostly performed on the CPU.

Parameters
  • labeling_input (Image) –

  • labeling_destination (Image, optional) –

  • blocksize (int, optional) – Renumbering is done in blocks for performance reasons. Change the blocksize to adapt to your data and hardware

Return type

labeling_destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.relabel_sequential(labeling_input, labeling_destination)

References

1

https://clij.github.io/clij2-docs/reference_closeIndexGapsInLabelMap

pyclesperanto_prototype.remainder(image1: Union[ndarray, OCLArray, Image, _OCLImage], image2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the remainder of a division of pairwise pixel values in two images

Parameters
  • image1 (Image) –

  • image2 (Image) –

  • destination (Image, optional) –

Return type

destination

pyclesperanto_prototype.replace_intensities(source: Union[ndarray, OCLArray, Image, _OCLImage], new_values_vector: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Replaces integer intensities specified in a vector image.

The vector image must be 3D with size (m, 1, 1) where m corresponds to the maximum intensity in the original image. Assuming the vector image contains values (0, 1, 0, 2) means:

  • All pixels with value 0 (first entry in the vector image) get value 0

  • All pixels with value 1 get value 1

  • All pixels with value 2 get value 0

  • All pixels with value 3 get value 2

Parameters
  • source (Image) –

  • new_values_vector (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.replace_intensities(input, new_values_vector, destination)

References

1

https://clij.github.io/clij2-docs/reference_replaceIntensities

pyclesperanto_prototype.replace_intensity(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, value_to_replace: float = 0, value_replacement: float = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Replaces a specific intensity in an image with a given new value.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • value_to_replace (Number, optional) –

  • value_replacement (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.replace_intensity(input, destination, value_to_replace, value_replacement)

References

1

https://clij.github.io/clij2-docs/reference_replaceIntensity

pyclesperanto_prototype.resample(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, factor_x: float = 1, factor_y: float = 1, factor_z: float = 1, linear_interpolation: bool = False) Union[ndarray, OCLArray, Image, _OCLImage]

Resamples an image with given size factors using an affine transform.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • factor_x (Number, optional) –

  • factor_y (Number, optional) –

  • factor_z (Number, optional) –

  • linear_interpolation (Boolean, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_resample

pyclesperanto_prototype.rigid_transform(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, translate_x: float = 0, translate_y: float = 0, translate_z: float = 0, angle_around_x_in_degrees: float = 0, angle_around_y_in_degrees: float = 0, angle_around_z_in_degrees: float = 0, rotate_around_center: bool = True, linear_interpolation: bool = False, auto_size: bool = False) Union[ndarray, OCLArray, Image, _OCLImage]

Translate the image by a given vector and rotate it by given angles.

Angles are given in degrees. To convert radians to degrees, use this formula:

angle_in_degrees = angle_in_radians / numpy.pi * 180.0

Parameters
  • source (Image) – image to be transformed

  • destination (Image, optional) – target image

  • translate_x (float, optional) – translation along x axis in pixels

  • translate_y (float, optional) – translation along y axis in pixels

  • translate_z (float, optional) – translation along z axis in pixels

  • angle_around_x_in_degrees (float, optional) – rotation around x axis in radians

  • angle_around_y_in_degrees (float, optional) – rotation around y axis in radians

  • angle_around_z_in_degrees (float, optional) – rotation around z axis in radians

  • rotate_around_center (bool, optional) – if True: rotate image around center (default) if False: rotate image around origin

  • linear_interpolation (bool, optional) – If true, bi-/tri-linear interpolation will be applied, if hardware allows. If false, nearest-neighbor interpolation wille be applied.

  • auto_size (bool, optional) – Automatically determines the size of the output image depending on the rotation angles. If set to True, the rotate_around_center setting is not relevant. The applied transform may have an additional translation vector that was not explicitly provided. This also means that any given translation vector will be neglected. Note: auto_size will be ignored if destination is not None. For more details see [1].

Return type

destination

See also

pyclesperanto_prototype.rotate(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, angle_around_x_in_degrees: float = 0, angle_around_y_in_degrees: float = 0, angle_around_z_in_degrees: float = 0, rotate_around_center: bool = True, linear_interpolation: bool = False, auto_size: bool = False) Union[ndarray, OCLArray, Image, _OCLImage]

Rotate the image by given angles.

Angles are given in degrees. To convert radians to degrees, use this formula:

angle_in_degrees = angle_in_radians / numpy.pi * 180.0

Parameters
  • source (Image) – image to be translated

  • destination (Image, optional) – target image

  • angle_around_x_in_degrees (float, optional) – rotation around x axis in degrees

  • angle_around_y_in_degrees (float, optional) – rotation around y axis in degrees

  • angle_around_z_in_degrees (float, optional) – rotation around z axis in degrees

  • rotate_around_center (bool, optional) – if True: rotate image around center if False: rotate image around origin

  • linear_interpolation (bool, optional) – If true, bi-/tri-linear interpolation will be applied, if hardware supports it. If false, nearest-neighbor interpolation wille be applied.

  • auto_size (bool, optional) – Automatically determines the size of the output image depending on the rotation angles. If set to True, the rotate_around_center setting is not relevant. Note: auto_size will be ignored if destination is not None. For more details see [1].

Return type

destination

See also

pyclesperanto_prototype.scale(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, factor_x: float = 1, factor_y: float = 1, factor_z: float = 1, centered: bool = True, linear_interpolation: bool = False, auto_size: bool = False) Union[ndarray, OCLArray, Image, _OCLImage]

Scale the image by given factors.

Parameters
  • source (Image) – image to be translated

  • destination (Image, optional) – target image

  • factor_x (float, optional) – scaling along x

  • factor_y (float, optional) – scaling along y

  • factor_z (float, optional) – scaling along z

  • centered (bool, optional) – If true, the image will be scaled to the center of the image. If false, the image will be scaled to the origin of the coordinate system.

  • linear_interpolation (bool, optional) – If true, bi-/tri-linear interplation will be applied. If false, nearest-neighbor interpolation wille be applied.

  • auto_size (bool, optional) – Automatically determines the size of the output image depending on the rotation angles. If set to True, the centered setting is not relevant. Note: auto_size will be ignored if destination is not None. For more details see [1].

Return type

destination

See also

pyclesperanto_prototype.select_device(name: Optional[str] = None, dev_type: Optional[str] = None, score_key=None) Device

Set current GPU device based on optional parameters.

Parameters
  • name (str, optional) – First device that contains name will be returned, defaults to None

  • dev_type (str, optional) – {‘cpu’, ‘gpu’, or None}, defaults to None

  • score_key (callable, optional) – scoring function, accepts device and returns int, defaults to None

Returns

The current GPU instance.

Return type

GPU

pyclesperanto_prototype.set(source: Union[ndarray, OCLArray, Image, _OCLImage], scalar: float = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Sets all pixel values x of a given image X to a constant value v.

<pre>f(x) = v</pre>

Parameters
  • source (Image) –

  • value (Number, optional) –

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.set(source, value)

References

1

https://clij.github.io/clij2-docs/reference_set

pyclesperanto_prototype.set_column(source: Union[ndarray, OCLArray, Image, _OCLImage], column_index: int = 0, value: float = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Sets all pixel values x of a given column in X to a constant value v.

Parameters
  • source (Image) –

  • column_index (Number, optional) –

  • value (Number, optional) –

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.set_column(source, column_index, value)

References

1

https://clij.github.io/clij2-docs/reference_setColumn

pyclesperanto_prototype.set_image_borders(destination: Union[ndarray, OCLArray, Image, _OCLImage], value: float = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Sets all pixel values at the image border to a given value.

Parameters
  • destination (Image) –

  • value (Number, optional) –

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.set_image_borders(destination, value)

References

1

https://clij.github.io/clij2-docs/reference_setImageBorders

pyclesperanto_prototype.set_non_zero_pixels_to_pixel_index(source: Union[ndarray, OCLArray, Image, _OCLImage], output: Union[ndarray, OCLArray, Image, _OCLImage] = None, offset: float = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Replaces all 0 value pixels in an image with the index of a pixel.

Parameters
  • source (Image) –

  • output (Image, optional) –

  • offset (int, optional) –

pyclesperanto_prototype.set_nonzero_pixels_to_pixelindex(source: Union[ndarray, OCLArray, Image, _OCLImage], output: Union[ndarray, OCLArray, Image, _OCLImage] = None, offset: float = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Replaces all 0 value pixels in an image with the index of a pixel.

Parameters
  • source (Image) –

  • output (Image, optional) –

  • offset (int, optional) –

pyclesperanto_prototype.set_plane(source: Union[ndarray, OCLArray, Image, _OCLImage], plane_index: int = 0, value: float = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Sets all pixel values x of a given plane in X to a constant value v.

Parameters
  • source (Image) –

  • plane_index (Number, optional) –

  • value (Number, optional) –

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.set_plane(source, plane_index, value)

References

1

https://clij.github.io/clij2-docs/reference_setPlane

pyclesperanto_prototype.set_ramp_x(source: Union[ndarray, OCLArray, Image, _OCLImage]) Union[ndarray, OCLArray, Image, _OCLImage]

Sets all pixel values to their X coordinate

Parameters

source (Image) –

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.set_ramp_x(source)

References

1

https://clij.github.io/clij2-docs/reference_setRampX

pyclesperanto_prototype.set_ramp_y(source: Union[ndarray, OCLArray, Image, _OCLImage]) Union[ndarray, OCLArray, Image, _OCLImage]

Sets all pixel values to their Y coordinate

Parameters

source (Image) –

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.set_ramp_y(source)

References

1

https://clij.github.io/clij2-docs/reference_setRampY

pyclesperanto_prototype.set_ramp_z(source: Union[ndarray, OCLArray, Image, _OCLImage]) Union[ndarray, OCLArray, Image, _OCLImage]

Sets all pixel values to their Z coordinate

Parameters

source (Image) –

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.set_ramp_z(source)

References

1

https://clij.github.io/clij2-docs/reference_setRampZ

pyclesperanto_prototype.set_row(source: Union[ndarray, OCLArray, Image, _OCLImage], row_index: int = 0, value: float = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Sets all pixel values x of a given row in X to a constant value v.

Parameters
  • source (Image) –

  • row_index (Number, optional) –

  • value (Number, optional) –

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.set_row(source, row_index, value)

References

1

https://clij.github.io/clij2-docs/reference_setRow

pyclesperanto_prototype.set_where_x_equals_y(source: Union[ndarray, OCLArray, Image, _OCLImage], value: float = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Sets all pixel values a of a given image A to a constant value v in case its coordinates x == y.

Otherwise the pixel is not overwritten. If you want to initialize an identity transfrom matrix, set all pixels to 0 first.

Parameters
  • source (Image) –

  • value (Number, optional) –

References

1

https://clij.github.io/clij2-docs/reference_setWhereXequalsY

pyclesperanto_prototype.set_where_x_greater_than_y(source: Union[ndarray, OCLArray, Image, _OCLImage], value: float = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Sets all pixel values a of a given image A to a constant value v in case its coordinates x > y.

Otherwise the pixel is not overwritten. If you want to initialize an identity transfrom matrix, set all pixels to 0 first.

Parameters
  • source (Image) –

  • value (Number, optional) –

References

1

https://clij.github.io/clij2-docs/reference_setWhereXgreaterThanY

pyclesperanto_prototype.set_where_x_smaller_than_y(source: Union[ndarray, OCLArray, Image, _OCLImage], value: float = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Sets all pixel values a of a given image A to a constant value v in case its coordinates x < y.

Otherwise the pixel is not overwritten. If you want to initialize an identity transfrom matrix, set all pixels to 0 first.

Parameters
  • source (Image) –

  • value (Number, optional) –

References

1

https://clij.github.io/clij2-docs/reference_setWhereXsmallerThanY

pyclesperanto_prototype.sign(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Extracts the sign of pixels. If a pixel value < 0, resulting pixel value will be -1. If it was > 0, it will be 1. Otherwise it will be 0.

This function aims to work similarly as its counterpart in numpy [1].

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

See also

pyclesperanto_prototype.small_hessian_eigenvalue(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines the Hessian eigenvalues and returns the small eigenvalue image.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

pyclesperanto_prototype.smaller(source1: Union[ndarray, OCLArray, Image, _OCLImage], source2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines if two images A and B smaller pixel wise.

f(a, b) = 1 if a < b; 0 otherwise.

Parameters
  • source1 (Image) –

  • source2 (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.smaller(source1, source2, destination)

References

1

https://clij.github.io/clij2-docs/reference_smaller

pyclesperanto_prototype.smaller_constant(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, constant: float = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Determines if two images A and B smaller pixel wise.

f(a, b) = 1 if a < b; 0 otherwise.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • constant (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.smaller_constant(source, destination, constant)

References

1

https://clij.github.io/clij2-docs/reference_smallerConstant

pyclesperanto_prototype.smaller_or_equal(source1: Union[ndarray, OCLArray, Image, _OCLImage], source2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines if two images A and B smaller or equal pixel wise.

f(a, b) = 1 if a <= b; 0 otherwise.

Parameters
  • source1 (Image) –

  • source2 (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.smaller_or_equal(source1, source2, destination)

References

1

https://clij.github.io/clij2-docs/reference_smallerOrEqual

pyclesperanto_prototype.smaller_or_equal_constant(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, constant: float = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Determines if two images A and B smaller or equal pixel wise.

f(a, b) = 1 if a <= b; 0 otherwise.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • constant (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.smaller_or_equal_constant(source, destination, constant)

References

1

https://clij.github.io/clij2-docs/reference_smallerOrEqualConstant

pyclesperanto_prototype.smooth_labels(labels_input: Union[ndarray, OCLArray, Image, _OCLImage], labels_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius: int = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Apply a morphological opening operation to a label image and afterwards fills gaps between the labels using voronoi-labeling. Finally, the result label image is masked so that all background pixels remain background pixels.

Note: It is recommended to process isotropic label images.

Parameters
  • labels_input (Image) –

  • labels_destination (Image, optional) –

  • radius (int, optional) –

Returns

labels_destination

Return type

Image

pyclesperanto_prototype.sobel(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Convolve the image with the Sobel kernel.

Author(s): Ruth Whelan-Jeans, Robert Haase

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.sobel(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_sobel

pyclesperanto_prototype.sorensen_dice_coefficient(source1: Union[ndarray, OCLArray, Image, _OCLImage], source2: Union[ndarray, OCLArray, Image, _OCLImage]) float

Determines the overlap of two binary images using the Sorensen-Dice coefficent.

A value of 0 suggests no overlap, 1 means perfect overlap. The Sorensen-Dice coefficient is saved in the colum ‘Sorensen_Dice_coefficient’. Note that the Sorensen-Dice coefficient s can be calculated from the Jaccard index j using this formula: <pre>s = f(j) = 2 j / (j + 1)</pre>

Parameters
  • source1 (Image) –

  • source2 (Image) –

Return type

float

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.sorensen_dice_coefficient(source1, source2)

References

1

https://clij.github.io/clij2-docs/reference_sorensenDiceCoefficient

pyclesperanto_prototype.spots_to_pointlist(input_spots: Union[ndarray, OCLArray, Image, _OCLImage], destination_pointlist: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Transforms a spots image as resulting from maximum/minimum detection in an image where every column contains d pixels (with d = dimensionality of the original image) with the coordinates of the maxima/minima.

Parameters
  • input_spots (Image) –

  • destination_pointlist (Image, optional) –

Return type

destination_pointlist

References

1

https://clij.github.io/clij2-docs/reference_spotsToPointList

pyclesperanto_prototype.sqrt(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the square root of each pixel.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

pyclesperanto_prototype.square(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Return the element-wise square of the input.

This function is supposed to be similar to its counterpart in numpy [1]

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

References

1

https://numpy.org/doc/stable/reference/generated/numpy.square.html

pyclesperanto_prototype.square_root(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the square root of each pixel.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

pyclesperanto_prototype.squared_difference(source1: Union[ndarray, OCLArray, Image, _OCLImage], source2: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines the squared difference pixel by pixel between two images.

Parameters
  • source1 (Image) –

  • source2 (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.squared_difference(source1, source2, destination)

References

1

https://clij.github.io/clij2-docs/reference_squaredDifference

pyclesperanto_prototype.standard_deviation_box(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius_x: int = 1, radius_y: int = 1, radius_z: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the local standard deviation of a pixels box neighborhood. The box size is specified by its half-width, half-height and half-depth (radius). If 2D images are given, radius_z will be ignored.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • radius_x (int, optional) –

  • radius_y (int, optional) –

  • radius_z (int, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.standard_deviation_box(source, destination, 10, 10, 10)

References

1

https://clij.github.io/clij2-docs/reference_standardDeviationBox

pyclesperanto_prototype.standard_deviation_intensity_map(intensity_image: Union[ndarray, OCLArray, Image, _OCLImage], labels: Union[ndarray, OCLArray, Image, _OCLImage], standard_deviation_intensity_map: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes an image and a corresponding label map, determines the standard deviation of the intensity per label and replaces every label with the that number.

This results in a parametric image expressing standard deviation of object intensity.

Parameters
  • intensity_image (Image) –

  • labels (Image) –

  • standard_deviation_intensity_map (Image, optional) –

Return type

standard_deviation_intensity_map

References

1

https://clij.github.io/clij2-docs/reference_standardDeviationIntensityMap

pyclesperanto_prototype.standard_deviation_of_distal_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, min_distance: float = 0, max_distance: float = 3.4028235e+38) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the standard deviation value of neighboring labels. The distance range of the centroids of the neighborhood can be configured.

Notes

  • Values of all pixels in a label each must be identical.

  • This operation assumes input images are isotropic.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • min_distance (float, optional) – default : 0

  • max_distance (float, optional) – default: maximum float value

Return type

parametric_map_destination

References

1

https://clij.github.io/clij2-docs/reference_standardDeviationOfProximalNeighbors

pyclesperanto_prototype.standard_deviation_of_n_most_touching_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, n: int = 1, ignore_touching_background: bool = True) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the standard_deviation value of most touching neighboring labels. The number of most touching neighbors can be configured.

Notes

  • Values of all pixels in a label each must be identical.

  • This operation assumes input images are isotropic.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • n (int) – number of most touching neighbors

Return type

parametric_map_destination

pyclesperanto_prototype.standard_deviation_of_n_nearest_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, n: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the standard_deviation value of neighboring labels. The number of nearest neighbors can be configured.

Notes

  • Values of all pixels in a label each must be identical.

  • This operation assumes input images are isotropic.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • n (int) – number of nearest neighbors

Return type

parametric_map_destination

References

1

https://clij.github.io/clij2-docs/reference_standardDeviationOfNNearestNeighbors

pyclesperanto_prototype.standard_deviation_of_proximal_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, min_distance: float = 0, max_distance: float = 3.4028235e+38) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the standard deviation value of neighboring labels. The distance range of the centroids of the neighborhood can be configured.

Notes

  • Values of all pixels in a label each must be identical.

  • This operation assumes input images are isotropic.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • min_distance (float, optional) – default : 0

  • max_distance (float, optional) – default: maximum float value

Return type

parametric_map_destination

References

1

https://clij.github.io/clij2-docs/reference_standardDeviationOfProximalNeighbors

pyclesperanto_prototype.standard_deviation_of_touch_portion_within_range_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, minimum_touch_portion: float = 0, maximum_touch_portion: float = 1.1, ignore_touching_background: bool = True) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the standard_deviation of neighboring labels whose touch portion lies within a specified range. The number of most touching neighbors can be configured. Minimum and maximum of that specified range are excluded.

Notes

  • Values of all pixels in a label each must be identical.

  • This operation assumes input images are isotropic.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • minimum_touch_portion (float, optional) –

  • maximum_touch_portion (float, optional) –

Return type

parametric_map_destination

pyclesperanto_prototype.standard_deviation_of_touching_neighbors(values: Union[ndarray, OCLArray, Image, _OCLImage], touch_matrix: Union[ndarray, OCLArray, Image, _OCLImage], standard_deviation_values_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a touch matrix and a vector of values to determine the standard deviation value among touching neighbors for every object.

Parameters
  • values (Image) –

  • touch_matrix (Image) –

  • standard_deviation_values_destination (Image, optional) –

Return type

standard_deviation_values_destination

References

1

https://clij.github.io/clij2-docs/reference_standardDeviationOfTouchingNeighbors

pyclesperanto_prototype.standard_deviation_of_touching_neighbors_map(parametric_map: Union[ndarray, OCLArray, Image, _OCLImage], label_map: Union[ndarray, OCLArray, Image, _OCLImage], parametric_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius: int = 1, ignore_touching_background: bool = True) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label image and a parametric intensity image and will replace each labels value in the parametric image by the standard deviation value of neighboring labels. The radius of the neighborhood can be configured: * radius 0: Nothing is replaced * radius 1: direct neighbors are taken into account * radius 2: neighbors and neighbors or neighbors are taken into account * radius n: …

Notes

  • Values of all pixels in a label each must be identical.

Parameters
  • parametric_map (Image) –

  • label_map (Image) –

  • parametric_map_destination (Image, optional) –

  • radius (int, optional) –

  • ignore_touching_background (bool, optional) –

Return type

parametric_map_destination

References

1

https://clij.github.io/clij2-docs/reference_standardDeviationOfTouchingNeighbors

pyclesperanto_prototype.standard_deviation_sphere(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius_x: int = 1, radius_y: int = 1, radius_z: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the local standard deviation of a pixels sphere neighborhood. The box size is specified by its half-width, half-height and half-depth (radius). If 2D images are given, radius_z will be ignored.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • radius_x (int, optional) –

  • radius_y (int, optional) –

  • radius_z (int, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.standard_deviation_sphere(source, destination, 10, 10, 10)

References

1

https://clij.github.io/clij2-docs/reference_standardDeviationSphere

pyclesperanto_prototype.standard_deviation_touch_portion(labels: Union[ndarray, OCLArray, Image, _OCLImage], std_touch_portion_vector_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Measure touch portion of all labels to each other and determine the standard deviation of the touch portion for each label and write it into a vector.

Notes

  • This operation assumes input images are isotropic.

Parameters
  • labels (Image) –

  • std_touch_portion_vector_destination (Image, optional) –

Return type

std_touch_portion_map_destination

pyclesperanto_prototype.standard_deviation_touch_portion_map(labels: Union[ndarray, OCLArray, Image, _OCLImage], std_touch_portion_map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Measure touch portion of all labels to each other and determine the standard deviation of the touch portion for each label and write it into a map.

Notes

  • This operation assumes input images are isotropic.

Parameters
  • labels (Image) –

  • std_touch_portion_map_destination (Image, optional) –

Return type

std_touch_portion_map_destination

pyclesperanto_prototype.standard_deviation_z_projection(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines the standard deviation intensity projection of an image stack along Z.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.standard_deviation_z_projection(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_standardDeviationZProjection

pyclesperanto_prototype.statistics_of_background_and_labelled_pixels(source: Union[ndarray, OCLArray, Image, _OCLImage] = None, labelmap: Union[ndarray, OCLArray, Image, _OCLImage] = None)

Determines bounding box, area (in pixels/voxels), min, max and mean intensity of background and labelled objects in a label map and corresponding pixels in the original image.

Instead of a label map, you can also use a binary image as a binary image is a label map with just one label.

This method is executed on the CPU and not on the GPU/OpenCL device.

Parameters
  • source (Image) –

  • labelmap (Image) –

Return type

Dictionary of measurements

References

1

https://clij.github.io/clij2-docs/reference_statisticsOfBackgroundAndLabelledPixels

pyclesperanto_prototype.statistics_of_image(image: Union[ndarray, OCLArray, Image, _OCLImage])

Determines image size (bounding box), area (in pixels/voxels), min, max, mean and standard deviation of the intensity of all pixels in the original image.

This method is executed on the CPU and not on the GPU/OpenCL device. Under the hood, it uses skimage.measure.regionprops [2] and thus, offers the same output. Additionally, standard_deviation_intensity is stored in the regionprops object.

Parameters

image

Return type

regionprops of the whole image

References

1

https://clij.github.io/clij2-docs/reference_statisticsOfImage

2

https://scikit-image.org/docs/stable/api/skimage.measure.html#skimage.measure.regionprops

pyclesperanto_prototype.statistics_of_labelled_neighbors(label_image: Union[ndarray, OCLArray, Image, _OCLImage], proximal_distances=(10, 20, 40, 80, 160), nearest_neighbor_ns=(1, 2, 3, 4, 5, 6, 7, 8, 10, 20))

Determine statistics of labeled objects such as average/min/mas neighbor distances, number of neighbors in a given radius, touch portion etc.

Notes

  • This operation assumes input images are isotropic.

Parameters
  • label_image (Image) –

  • proximal_distances (list of float, optional) – will determine statistics for neighbors within specified distances

  • nearest_neighbor_ns (list of int, optional) – will determine statistics of specified n nearest neighbors

Return type

pandas.DataFrame

pyclesperanto_prototype.statistics_of_labelled_pixels(intensity_image: Union[ndarray, OCLArray, Image, _OCLImage] = None, label_image: Union[ndarray, OCLArray, Image, _OCLImage] = None)

Determines bounding box, area (in pixels/voxels), min, max, mean, standard deviation of the intensity and some shape descriptors of labelled objects in a label map and corresponding pixels in the original image.

Instead of a label map, you can also use a binary image as a binary image is a label map with just one label.

Note: the parameter order is different compared to regionprops.

Parameters
  • input (Image) –

  • labelmap (Image) –

References

1

https://clij.github.io/clij2-docs/reference_statisticsOfLabelledPixels

pyclesperanto_prototype.sub_stack(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, start_z: int = 0, end_z: int = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Crops multiple Z-slices of a 3D stack into a new 3D stack.

Parameters
  • input (Image) –

  • destination (Image, optional) –

  • start_z (Number, optional) –

  • end_z (Number, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_subStack

pyclesperanto_prototype.subtract_gaussian_background(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, sigma_x: float = 2, sigma_y: float = 2, sigma_z: float = 2) Union[ndarray, OCLArray, Image, _OCLImage]

Applies Gaussian blur to the input image and subtracts the result from the original.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • sigma_x (Number, optional) –

  • sigma_y (Number, optional) –

  • sigma_z (Number, optional) –

Return type

destination

References

..[1] https://clij.github.io/clij2-docs/reference_subtractGaussianBackground

pyclesperanto_prototype.subtract_image_from_scalar(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, scalar: float = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Subtracts one image X from a scalar s pixel wise.

<pre>f(x, s) = s - x</pre>

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • scalar (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.subtract_image_from_scalar(input, destination, scalar)

References

1

https://clij.github.io/clij2-docs/reference_subtractImageFromScalar

pyclesperanto_prototype.subtract_images(subtrahend: Union[ndarray, OCLArray, Image, _OCLImage], minuend: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Subtracts one image X from another image Y pixel wise.

<pre>f(x, y) = x - y</pre>

Parameters
  • subtrahend (Image) –

  • minuend (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.subtract_images(subtrahend, minuend, destination)

References

1

https://clij.github.io/clij2-docs/reference_subtractImages

pyclesperanto_prototype.subtract_labels(labels_input1: Union[ndarray, OCLArray, Image, _OCLImage], labels_input2: Union[ndarray, OCLArray, Image, _OCLImage], labels_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Combines two label images by removing all labels of a given label image which also exist in another. Labels do not have to fit perfectly, if a single pixel overlaps, the label will be removed.

Parameters
  • labels_input1 (Image) – label image to add labels to

  • labels_input2 (Image) – label image to add labels from

  • labels_destination (Image, optional) – result

Return type

labels_destination

pyclesperanto_prototype.sum_of_all_pixels(source: Union[ndarray, OCLArray, Image, _OCLImage]) float

Determines the sum of all pixels in a given image.

It will be stored in a new row of ImageJs Results table in the column ‘Sum’.

Parameters

source (Image) – The image of which all pixels or voxels will be summed.

Return type

float

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.sum_of_all_pixels(source)

References

1

https://clij.github.io/clij2-docs/reference_sumOfAllPixels

pyclesperanto_prototype.sum_reduction_x(src: Union[ndarray, OCLArray, Image, _OCLImage], dst: Union[ndarray, OCLArray, Image, _OCLImage] = None, blocksize: int = 256) Union[ndarray, OCLArray, Image, _OCLImage]

Takes an image and reduces it in width by factor blocksize. The new pixels contain the sum of the reduced pixels. For example, given the following image and block size 4: [0, 1, 1, 0, 1, 0, 1, 1] would lead to an image [2, 3]

Parameters
  • src (Image) –

  • dst (Image, optional) –

  • blocksize (int, optional) –

pyclesperanto_prototype.sum_x_projection(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines the sum intensity projection of an image along Z.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.sum_x_projection(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_sumXProjection

pyclesperanto_prototype.sum_y_projection(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines the sum intensity projection of an image along Z.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.sum_y_projection(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_sumYProjection

pyclesperanto_prototype.sum_z_projection(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines the sum intensity projection of an image along Z.

Parameters
  • source (Image) –

  • destination_sum (Image, optional) –

Return type

destination_sum

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.sum_z_projection(source, destination_sum)

References

1

https://clij.github.io/clij2-docs/reference_sumZProjection

pyclesperanto_prototype.symmetric_maximum_matrix(source_matrix: Union[ndarray, OCLArray, Image, _OCLImage], destination_matrix: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes matrix (which might be asymmetric) and makes a symmetrical matrix out of it by taking the maximum value of m(x,y) and m(y,x) and storing it in both entries.

Parameters
  • source_matrix (Image) –

  • destination_matrix (Image, optional) –

Return type

destination_matrix

pyclesperanto_prototype.symmetric_mean_matrix(source_matrix: Union[ndarray, OCLArray, Image, _OCLImage], destination_matrix: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes matrix (which might be asymmetric) and makes a symmetrical matrix out of it by taking the mean value of m(x,y) and m(y,x) and storing it in both entries.

Parameters
  • source_matrix (Image) –

  • destination_matrix (Image, optional) –

Return type

destination_matrix

pyclesperanto_prototype.symmetric_minimum_matrix(source_matrix: Union[ndarray, OCLArray, Image, _OCLImage], destination_matrix: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes matrix (which might be asymmetric) and makes a symmetrical matrix out of it by taking the minimum value of m(x,y) and m(y,x) and storing it in both entries.

Parameters
  • source_matrix (Image) –

  • destination_matrix (Image, optional) –

Return type

destination_matrix

pyclesperanto_prototype.symmetric_sum_matrix(source_matrix: Union[ndarray, OCLArray, Image, _OCLImage], destination_matrix: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes matrix (which might be asymmetric) and makes a symmetrical matrix out of it by taking the sum value of m(x,y) and m(y,x) and storing it in both entries.

Parameters
  • source_matrix (Image) –

  • destination_matrix (Image, optional) –

Return type

destination_matrix

pyclesperanto_prototype.threshold(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, constant: float = 0) Union[ndarray, OCLArray, Image, _OCLImage]

Determines if two images A and B greater pixel wise.

f(a, b) = 1 if a > b; 0 otherwise.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • constant (Number, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.greater_constant(source, destination, constant)

References

1

https://clij.github.io/clij2-docs/reference_greaterConstant

pyclesperanto_prototype.threshold_otsu(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Binarizes an image using Otsu’s threshold method [3] implemented in scikit-image[2] using a histogram determined on the GPU to create binary images.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.threshold_otsu(input, destination)

References

1

https://clij.github.io/clij2-docs/reference_thresholdOtsu

2

https://scikit-image.org/docs/dev/api/skimage.filters.html#skimage.filters.threshold_otsu

3

https://ieeexplore.ieee.org/document/4310076

pyclesperanto_prototype.to_igraph(adjacency_matrix: Union[ndarray, OCLArray, Image, _OCLImage], centroids: Optional[Union[ndarray, OCLArray, Image, _OCLImage]] = None)

Converts a given adjacency matrix to a iGraph [1] graph data structure.

Note: the given centroids typically have one entry less than the adjacency matrix is wide, because those matrices contain a first row and column representing background. When exporting the networkx graph, that first column will be ignored.

Parameters
  • adjacency_matrix (Image) – m*m touch-matrix, proximal-neighbor-matrix or n-nearest-neighbor-matrix

  • centroids (Image, optional) – d*(m-1) matrix, position list of centroids

Return type

iGraph graph

See also

pyclesperanto_prototype.to_networkx(adjacency_matrix: Union[ndarray, OCLArray, Image, _OCLImage], centroids: Optional[Union[ndarray, OCLArray, Image, _OCLImage]] = None)

Converts a given adjacency matrix to a networkx [1] graph data structure.

Note: the given centroids typically have one entry less than the adjacency matrix is wide, because those matrices contain a first row and column representing background. When exporting the igraph graph, that first column will be ignored.

Parameters
  • adjacency_matrix (Image) – m*m touch-matrix, proximal-neighbor-matrix or n-nearest-neighbor-matrix

  • centroids (Image, optional) – d*(m-1) matrix, position list of centroids

Return type

networkx graph

See also

pyclesperanto_prototype.top_hat_box(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius_x: float = 1, radius_y: float = 1, radius_z: float = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Applies a top-hat filter for background subtraction to the input image.

Parameters
  • source (Image) – The input image where the background is subtracted from.

  • destination (Image, optional) – The output image where results are written into.

  • radius_x (Image, optional) – Radius of the background determination region in X.

  • radius_y (Image, optional) – Radius of the background determination region in Y.

  • radius_z (Image, optional) – Radius of the background determination region in Z.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.top_hat_box(input, destination, radiusX, radiusY, radiusZ)

References

1

https://clij.github.io/clij2-docs/reference_topHatBox

pyclesperanto_prototype.top_hat_sphere(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius_x: float = 1, radius_y: float = 1, radius_z: float = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Applies a top-hat filter for background subtraction to the input image.

Parameters
  • source (Image) – The input image where the background is subtracted from.

  • destination (Image, optional) – The output image where results are written into.

  • radius_x (Image, optional) – Radius of the background determination region in X.

  • radius_y (Image, optional) – Radius of the background determination region in Y.

  • radius_z (Image, optional) – Radius of the background determination region in Z.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.top_hat_sphere(input, destination, radiusX, radiusY, radiusZ)

References

1

https://clij.github.io/clij2-docs/reference_topHatSphere

pyclesperanto_prototype.touch_matrix_to_adjacency_matrix(touch_matrix: Union[ndarray, OCLArray, Image, _OCLImage], adjacency_matrix_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, self_adjacent: bool = True) Union[ndarray, OCLArray, Image, _OCLImage]

Takes touch matrix (which is typically just half-filled) and makes a symmetrical adjacency matrix out of it.

Furthermore, one can define if an object is adjacent to itself (default: True).

Parameters
  • touch_matrix (Image) –

  • adjacency_matrix_destination (Image, optional) –

  • self_adjacent (bool, optional) – Default: true

Return type

adjacency_matrix_destination

References

1

https://clij.github.io/clij2-docs/reference_adjacencyMatrixToTouchMatrix

pyclesperanto_prototype.touch_matrix_to_mesh(pointlist: Union[ndarray, OCLArray, Image, _OCLImage], touch_matrix: Union[ndarray, OCLArray, Image, _OCLImage], mesh_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a pointlist with dimensions n*d with n point coordinates in d dimensions and a touch matrix of size n*n to draw lines from all points to points if the corresponding pixel in the touch matrix is 1.

Parameters
  • pointlist (Image) – n*d matrix representing n coordinates with d dimensions.

  • touch_matrix (Image) – A 2D binary matrix with 1 in pixels (i,j) where label i touches

  • j. (label) –

  • mesh_destination (Image, optional) – The output image where results are written into.

Return type

mesh_destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.touch_matrix_to_mesh(pointlist, touch_matrix, mesh_destination)

References

1

https://clij.github.io/clij2-docs/reference_touchMatrixToMesh

pyclesperanto_prototype.touch_portion_within_range_neighbor_count(labels: Union[ndarray, OCLArray, Image, _OCLImage], count_vector_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, minimum_touch_portion: float = 0, maximum_touch_portion: float = 1.1) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label map, determines which labels are touch within a given portion range and returns the number of those in a vector.

Notes

  • This operation assumes input images are isotropic.

Parameters
  • labels (Image) –

  • count_vector_destination (Image, optional) –

  • minimum_touch_portion (float, optional) –

  • maximum_touch_portion (float, optional) –

Return type

destination

pyclesperanto_prototype.touch_portion_within_range_neighbor_count_map(labels: Union[ndarray, OCLArray, Image, _OCLImage], map_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, minimum_touch_portion: float = 0, maximum_touch_portion: float = 1.1) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label map, determines which labels are touching within a given portion range and replaces every label with the number of neighboring labels.

Notes

  • This operation assumes input images are isotropic.

Parameters
  • labels (Image) –

  • map_destination (Image, optional) –

  • minimum_touch_portion (float, optional) –

  • maximum_touch_portion (float, optional) –

Return type

destination

pyclesperanto_prototype.touching_labels_to_igraph(label_image: Union[ndarray, OCLArray, Image, _OCLImage])

Takes a label image, determines which labels are touching each other and returns an igraph graph representing labels in range.

Parameters

label_image (Image) –

Return type

igraph Graph

pyclesperanto_prototype.touching_labels_to_networkx(label_image: Union[ndarray, OCLArray, Image, _OCLImage])

Takes a label image, determines which labels are touching each other and returns an networkx graph representing labels in range.

Parameters

label_image (Image) –

Return type

networkx Graph

pyclesperanto_prototype.touching_neighbor_count_map(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a label map, determines which labels touch and replaces every label with the number of touching neighboring labels.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_touchingNeighborCountMap

pyclesperanto_prototype.translate(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, translate_x: float = 0, translate_y: float = 0, translate_z: float = 0, linear_interpolation: bool = False) Union[ndarray, OCLArray, Image, _OCLImage]

Translate the image by a given vector.

Parameters
  • source (Image) – image to be translated

  • destination (Image, optional) – target image

  • translate_x (float, optional) – translation along x axis in pixels

  • translate_y (float, optional) – translation along y axis in pixels

  • translate_z (float, optional) – translation along z axis in pixels

  • linear_interpolation (bool, optional) – If true, bi-/tri-linear interplation will be applied. If false, nearest-neighbor interpolation wille be applied.

Return type

destination

pyclesperanto_prototype.transpose_xy(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Transpose X and Y axes of an image.

Parameters
  • source (Image) – The input image.

  • destination (Image, optional) – The output image where results are written into.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.transpose_xy(input, destination)

References

1

https://clij.github.io/clij2-docs/reference_transposeXY

pyclesperanto_prototype.transpose_xz(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Transpose X and Z axes of an image.

Parameters
  • source (Image) – The input image.

  • destination (Image, optional) – The output image where results are written into.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.transpose_xz(input, destination)

References

1

https://clij.github.io/clij2-docs/reference_transposeXZ

pyclesperanto_prototype.transpose_yz(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Transpose Y and Z axes of an image.

Parameters
  • source (Image) – The input image.

  • destination (Image, optional) – The output image where results are written into.

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.transpose_yz(input, destination)

References

1

https://clij.github.io/clij2-docs/reference_transposeYZ

pyclesperanto_prototype.undefined_to_zero(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Copies all pixels instead those which are not a number (NaN) or infinity (inf), which are replaced by 0.

Parameters
  • source (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.undefined_to_zero(source, destination)

References

1

https://clij.github.io/clij2-docs/reference_undefinedToZero

pyclesperanto_prototype.variance_box(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius_x: int = 1, radius_y: int = 1, radius_z: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the local variance of a pixels box neighborhood.

The box size is specified by

its half-width, half-height and half-depth (radius). If 2D images are given, radius_z will be ignored.

source : Image destination : Image, optional radius_x : int, optional radius_y : int, optional radius_z : int, optional

destination

>>> import pyclesperanto_prototype as cle
>>> cle.variance_box(source, destination, 10, 10, 10)
1

https://clij.github.io/clij2-docs/reference_varianceBox

pyclesperanto_prototype.variance_sphere(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, radius_x: int = 1, radius_y: int = 1, radius_z: int = 1) Union[ndarray, OCLArray, Image, _OCLImage]

Computes the local variance of a pixels sphere neighborhood. The sphere size is specified by its half-width, half-height and half-depth (radius). If 2D images are given, radius_z will be ignored.

Parameters
  • source (Image) –

  • destination (Image, optional) –

  • radius_x (int, optional) –

  • radius_y (int, optional) –

  • radius_z (int, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.variance_sphere(source, destination, 10, 10, 10)

References

1

https://clij.github.io/clij2-docs/reference_varianceSphere

pyclesperanto_prototype.voronoi_labeling(binary_source: Union[ndarray, OCLArray, Image, _OCLImage], labeling_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes a binary image, labels connected components and dilates the regions using a octagon shape until they touch.

The resulting label map is written to the output.

Parameters
  • input (Image) –

  • destination (Image, optional) –

Return type

destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.voronoi_labeling(input, destination)

References

1

https://clij.github.io/clij2-docs/reference_voronoiLabeling

pyclesperanto_prototype.voronoi_otsu_labeling(source: Union[ndarray, OCLArray, Image, _OCLImage], label_image_destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, spot_sigma: float = 2, outline_sigma: float = 2) Union[ndarray, OCLArray, Image, _OCLImage]

Labels objects directly from grey-value images.

The two sigma parameters allow tuning the segmentation result. Under the hood, this filter applies two Gaussian blurs, spot detection, Otsu-thresholding [2] and Voronoi-labeling [3]. The thresholded binary image is flooded using the Voronoi tesselation approach starting from the found local maxima.

Notes

  • This operation assumes input images are isotropic.

Parameters
  • source (Image) – Input grey-value image

  • label_image_destination (Image, optional) – Output image

  • spot_sigma (float, optional) – controls how close detected cells can be

  • outline_sigma (float, optional) – controls how precise segmented objects are outlined.

Return type

label_image_destination

Examples

>>> import pyclesperanto_prototype as cle
>>> cle.voronoi_otsu_labeling(source, label_image_destination, 10, 2)

References

1

https://clij.github.io/clij2-docs/reference_voronoiOtsuLabeling

2

https://ieeexplore.ieee.org/document/4310076

3

https://en.wikipedia.org/wiki/Voronoi_diagram

pyclesperanto_prototype.write_values_to_positions(positions_and_values: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Takes an image with three/four rows (2D: height = 3; 3D: height = 4): x, y [, z] and v and target image.

The value v will be written at position x/y[/z] in the target image.

Parameters
  • positions_and_values (Image) –

  • destination (Image, optional) –

Return type

destination

References

1

https://clij.github.io/clij2-docs/reference_writeValuesToPositions

pyclesperanto_prototype.z_position_of_maximum_z_projection(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines a Z-position of the maximum intensity along Z and writes it into the resulting image.

If there are multiple z-slices with the same value, the smallest Z will be chosen.

Parameters
  • source (Image) – Input image stack

  • destination (Image, optional) – altitude map

Return type

destination

See also

pyclesperanto_prototype.z_position_of_minimum_z_projection(source: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Determines a Z-position of the minimum intensity along Z and writes it into the resulting image.

If there are multiple z-slices with the same value, the smallest Z will be chosen.

Parameters
  • source (Image) – Input image stack

  • destination (Image, optional) – altitude map

Return type

destination

See also

pyclesperanto_prototype.z_position_projection(source_stack: Union[ndarray, OCLArray, Image, _OCLImage], z_position: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None) Union[ndarray, OCLArray, Image, _OCLImage]

Project a defined Z-slice of a 3D stack into a 2D image.

Which Z-slice is defined as the z_position image, which represents an altitude map.

Parameters
  • source_stack (Image) – Input image stack

  • z_position (Image) – altitude map

  • destination (Image, optional) – Projected image

Return type

destination

See also

pyclesperanto_prototype.z_position_range_projection(source_stack: Union[ndarray, OCLArray, Image, _OCLImage], z_position: Union[ndarray, OCLArray, Image, _OCLImage], destination: Union[ndarray, OCLArray, Image, _OCLImage] = None, start_z: int = - 5, end_z: int = 5) Union[ndarray, OCLArray, Image, _OCLImage]

Project multiple Z-slices of a 3D stack into a new 3D stack. Which Z-slice is defined as the z_position image, which represents an altitude map. The two additional numbers define the range relative to the given z-position.

Parameters
  • source_stack (Image) – Input image stack

  • z_position (Image) – altitude map

  • destination (Image, optional) – Projected image

  • start_z (int, optional) –

  • end_z (int, optional) –

Return type

destination

See also